Trimmer Potentiometers

www.DataSheet4U.com **Cat.No.R50E-16**

for EU RoHS Compliant

- · All the products in this catalog comply with EU RoHS.
- EU RoHS is "the European Directive 2002/95/EC on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment".
- · For more details, please refer to our website 'Murata's Approach for EU RoHS' (http://www.murata.com/info/rohs.html).

CONTENTS

Part Numbering 2 Selection Guide of Trimmer Potentiometers 3 PVZ2/PVA2 Series Notice — 8 SMD Open Type 3mm Size PVZ3 Series 10 PVZ3 Series Notice 13 SMD Sealed Type 2mm Size PVF2 Series ——— 15 PVF2 Series Notice — 16 SMD Sealed Type 3mm Size PVG3 Series — 18 PVG3 Series Notice — 21 SMD Sealed Type 4mm Size PVM4 Series —— 23 25 PVM4 Series Notice — 28 30 PVG5 Series Notice — Lead Sealed Type Single-turn PV32 Series 32 PV32 Series Notice -35 Lead Sealed Type Multi-turn PV12/PV37/PV36 Series — 37 PV12/PV37/PV36 Series Notice 46 SMD Open Type (PVZ2/A2/Z3)/SMD Sealed Type (PVM4A_C01 Series) Specifications and Test Methods | -48 SMD Sealed Type (PVF2/G3/M4A_D01/G5)/Lead Sealed Type (PV32/12/37/36) Specifications and Test Methods | -49 Packaging 52 Recommended Adjustment Tools/Qualified Standards — 56

[•] The RoHS compliance means that we judge from EU Directive 2002/95/EC the products do not contain lead, cadmium, mercury, hexavalent chromium, PBB and PBDE, except exemptions stated in EU Directive 2002/95/EC annex and impurities existing in the natural world.

[•] This statement does not insure the compliance of any of the listed parts with any laws or legal imperatives developed by any EU members individually with regards to the RoHS Directive.

Part Numbering

Trimmer Potentiometers

PV Z3 A 103 C01 R00 (Part Number)

Product ID

Product ID	
PV	Trimmer Potentiometers

3Adjustment Direction /Lead Type

Code	Series	Code	Adjustment Direction/ Lead Type
70	SMD Open 2mm Size	Α	Тор
Z2	Carbon Resistive Element	R	Rear
A2	SMD Open 2mm Size	Α	Тор
	0.45 0	Α	Тор
Z 3	SMD Open 3mm Size Carbon Resistive Element	G	Тор
	Carbon Resistive Element	K	Rear
F2	SMD Sealed 2mm Size	Α	Тор
		Α	Top, J-hook
G3	SMD Sealed 3mm Size	G	Top, Gull-wing
		K	Rear
M4	SMD Sealed 4mm Size	Α	Тор
G5	SMD Sealed 5mm Square	Α	Тор
Go	11-turns	Н	Side
	Lead Sealed 6mm Round Single-turn	Н	Top, Triangle
		Р	Top, Triangle
32		R	Top, Inline
32		N	Side, Triangle
		Т	Side, Triangle
		S	Side, Triangle
		Н	Top, Triangle
12	Lead Sealed 7mm Round	Р	Top, Triangle
12	4-turns	Т	Side, Triangle
		S	Side, Triangle
		W	Top, Inline
		Υ	Top, Triangle
36	Lead Sealed 10mm Square 25-turns	Р	Side, Triangle
	25-101113	Х	Side, Inline
		Z	Side, Triangle
_		W	Top, Triangle
		Υ	Top, Inline
37	Lead Sealed 6mm Square 12-turns	Р	Side, Triangle
	12 (01113	Х	Side, Triangle
		Z	Side, Inline

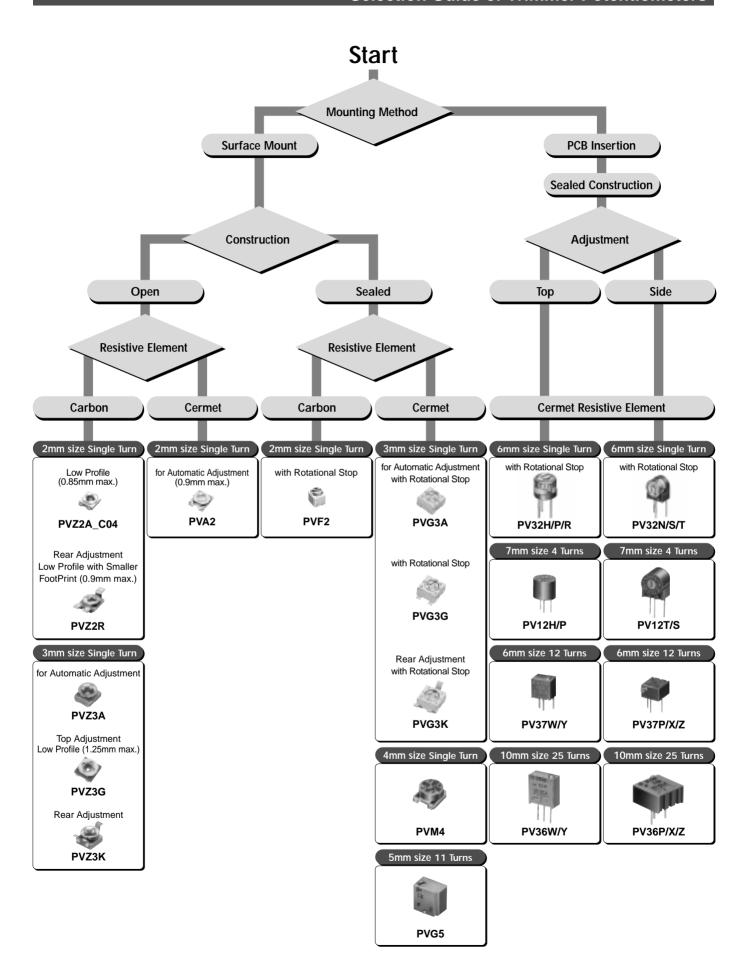
4Total Resistance

Expressed by three figures. The unit is ohm. The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

Ex.)	Code	Total Resistance
	100	10Ω
	102	1000Ω
	104	100000Ω (=100kΩ)

5Individual Specification

Series	Code	Individual Specification Code		
PVA2	A01	Standard Type		
PVZ2	C04	Standard Type (High-heat Resistance Type/Ultra-thin Type)		
	C01	Standard Type (High-heat Resistance Type/Top Adjustment)		
PVZ3	F01	High Characteristic Carbon Type (only PVZ3G)		
	E01	High-heat Resistance Type (for Rear Adjustment)		
PVM4	C01	Standard Type		
PVIVI4	D01	High-liability Type		
PVF2	A11	Standard Type (Resistance Change Characteristics: Linear)		
PV32/PV12	A01	Standard Type		
PVG3/ PV36/PV37	C01	Standard Type		
PV36/PV37	C01	Standard Type		
PV30/PV3/	C31	Radial Taping		
PVG5	C03	Standard Type		


6 Packaging

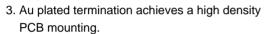
Code	Packaging
A00	Ammo Pack
B00	Bulk
M00*	Magazine
R00	Reel

^{*} M12 for PV36P Type and M15 for PV36W/Y/X/Z Type.

Selection Guide of Trimmer Potentiometers

Trimmer Potentiometers

SMD Open Type 2mm Size PVZ2/PVA2 Series


PVZ2 Series

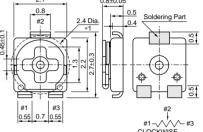
■ Features

1. Ultra-small and thin external dimensions of 2.1(W)x2.7(L)x0.85 max. (T)mm.

(Top adjustment type: PVZ2A_C04 Series)

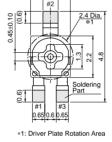
 Ultra-small and thin external dimensions of 2.1(W)x4.8(L)x0.9 max. (T)mm. (Rear adjustment type: PVZ2R_C04 Series) Compact PCB design is possible by smaller adjustment hole (3.0mm dia.) due to short wing length (4.8mm).

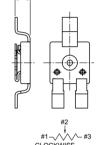
- 4. Cross-shaped driver slot allows for in-process automatic adjustment and it provides superior adjustability.
- 5. Two-piece parts construction achieves low cost and excellent quality.
- Special resin substrate allows high peak temperature for reflow soldering. (PVZ2_Cxx Series)


■ Applications

Pick-up module
 LCD
 Cellular-phone
 PHS
 Pager
 DVC

7. Digital camera 8. Portable audio, etc.


PVZ2A



Driver Plate Rotation Area:
 Please do not place any components
 more than 0.5mm in height within this area

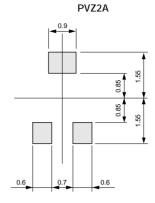
(Tolerance: ±0.2) in mm)

(Tolerance : ±0.2)

PVZ2R

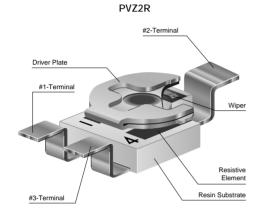
Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PVZ2□471C04	0.05(50°C)	Reflow/Soldering Iron	1(240°±10°)	470ohm ±30%	±500
PVZ2□102C04	0.05(50°C)	Reflow/Soldering Iron	1(240°±10°)	1k ohm ±30%	±500
PVZ2□222C04	0.05(50°C)	Reflow/Soldering Iron	1(240°±10°)	2.2k ohm ±30%	±500
PVZ2□472C04	0.05(50°C)	Reflow/Soldering Iron	1(240°±10°)	4.7k ohm ±30%	±500
PVZ2□103C04	0.05(50°C)	Reflow/Soldering Iron	1(240°±10°)	10k ohm ±30%	±500
PVZ2□223C04	0.05(50°C)	Reflow/Soldering Iron	1(240°±10°)	22k ohm ±30%	±500
PVZ2□473C04	0.05(50°C)	Reflow/Soldering Iron	1(240°±10°)	47k ohm ±30%	±500
PVZ2□104C04	0.05(50°C)	Reflow/Soldering Iron	1(240°±10°)	100k ohm ±30%	±500
PVZ2□224C04	0.05(50°C)	Reflow/Soldering Iron	1(240°±10°)	220k ohm ±30%	±500
PVZ2□474C04	0.05(50°C)	Reflow/Soldering Iron	1(240°±10°)	470k ohm ±30%	±500
PVZ2□105C04	0.05(50°C)	Reflow/Soldering Iron	1(240°±10°)	1M ohm ±30%	±500

^{*}Available for other resistance value.

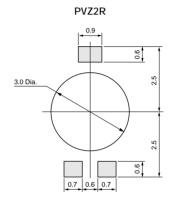

Operating Temperature Range: -25 to 85 °C

The blank column is filled with the code of adjustment direction and lead type A (top) or R (rear).

■ Construction



■ Standard Land Pattern



(Tolerance : ±0.1) in mm)

■ Construction

■ Standard Land Pattern

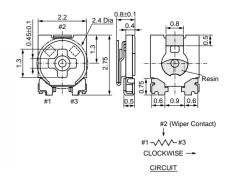
(Tolerance : ±0.1)

■ Characteristics

Humidity Exposure	Res. Change: +10, -2%
High Temperature Exposure	Res. Change: R≦50kohm···+2, -10% 50kohm <r···+2, -15%<="" td=""></r···+2,>
Humidity Load Life	Res. Change: ±10%
Load Life	Res. Change: R≦50kohm···+2, -10% 50kohm <r···+2, -15%<="" td=""></r···+2,>
Temperature Cycle	Res. Change: ±5%
Rotational Life	Res. Change: ±10% (10 cycles)

sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

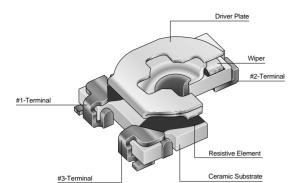
PVA2 Series


■ Features

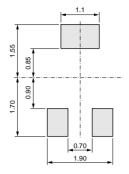
- 1. Ultra-small and thin external dimensions of 2.2(W)x2.75(L)x0.90 max.(T)mm.
- 2. For the terminal attachment method of construction which uses neither solder nor adhesives, good solderability and terminal attachment intensity are realized.
- 3. Because of multi-contact wiper structure, PVA2 has a stable characteristics (low noise).
- 4. PVA2 series do not use a solder, flux and cleaning solvent, so they are environmentally friendly products.
- 5. Heat resistance performance enables high temperature peak re-flow soldering.

■ Applications

- 1. Thin-model optical pick-up module
- 2. LCD module
- 3. Optical communication module
- 4. Small sensor module
- 5. Digital camera
- 6. Small telecommunicaions equipment, etc.


Part Number	Power Rating (W)	Soldering Method		Total Resistance Value	TCR (ppm/°C)
PVA2A101A01	0.1(70°C)	Reflow/Soldering Iron	1(260°±10°)	100ohm ±25%	±250
PVA2A221A01	0.1(70°C)	Reflow/Soldering Iron	1(260°±10°)	220ohm ±25%	±250
PVA2A471A01	0.1(70°C)	Reflow/Soldering Iron	1(260°±10°)	470ohm ±25%	±250
PVA2A102A01	0.1(70°C)	Reflow/Soldering Iron	1(260°±10°)	1k ohm ±25%	±250
PVA2A222A01	0.1(70°C)	Reflow/Soldering Iron	1(260°±10°)	2.2k ohm ±25%	±250
PVA2A472A01	0.1(70°C)	Reflow/Soldering Iron	1(260°±10°)	4.7k ohm ±25%	±250
PVA2A103A01	0.1(70°C)	Reflow/Soldering Iron	1(260°±10°)	10k ohm ±25%	±250
PVA2A223A01	0.1(70°C)	Reflow/Soldering Iron	1(260°±10°)	22k ohm ±25%	±250
PVA2A473A01	0.1(70°C)	Reflow/Soldering Iron	1(260°±10°)	47k ohm ±25%	±250
PVA2A104A01	0.1(70°C)	Reflow/Soldering Iron	1(260°±10°)	100k ohm ±25%	±250
PVA2A224A01	0.1(70°C)	Reflow/Soldering Iron	1(260°±10°)	220k ohm ±25%	±250
PVA2A474A01	0.1(70°C)	Reflow/Soldering Iron	1(260°±10°)	470k ohm ±25%	±250
PVA2A105A01	0.1(70°C)	Reflow/Soldering Iron	1(260°±10°)	1M ohm ±25%	±250
PVA2A225A01	0.1(70°C)	Reflow/Soldering Iron	1(260°±10°)	2.2M ohm ±25%	±250

^{*}Available for other resistance value.


Operating Temperature Range: -55 to 125 °C

■ Construction

■ Standard Land Pattern

(Tolerance : ±0.1) in mm

■ Characteristics

Humidity Exposure	Res. Change: ±3%
High Temperature Exposure	Res. Change: ±3%
Humidity Load Life	Res. Change: ±3%
Load Life	Res. Change: ±3%
Temperature Cycle	Res. Change: ±3%
Rotational Life	Res. Change: ±10% (10 cycles)

PVZ2/PVA2 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

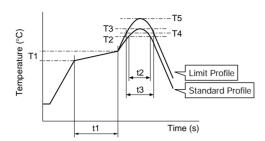
The trimmer potentiometer should not be used under the following environmental conditions:

- Notice (Rating)
- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- 2. The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.
- If the trimmer potentiometer is used in DC and high humidity conditions, please connect wiper (#2) for plus and resistive element (#1 or #3) for minus. (PVZ Series only)

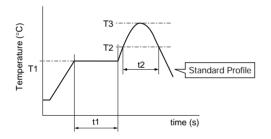
- Corrosive gaseous atmosphere
 (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

■ Notice (Soldering and Mounting)

- 1. Soldering
- (1) Reflow soldering method and soldering iron are available. Cannot be soldered using the flow soldering method (dipping). If you use the flow soldering method, the trimmer potentiometer may not function.
- (2) Use our standard land dimension. Excessive land area causes displacement due to the effect of the surface tension of the solder. Insufficient land area leads to insufficient soldering strength of the chip.
- (3) Soldering condition Refer to the temperature profile. If the soldering conditions are not suitable, e.g., excessive time and/or excessive temperature, the trimmer potentiometer may deviate from the specified characteristics.
- (4) Apply the appropriate amount of solder paste. The thickness of solder paste should be printed from 100 micro m to 150 micro m and the dimension of land pattern used should be Murata's standard land pattern at reflow soldering. Insufficient amounts of solder can lead to insufficient soldering strength on PCB. Excessive amounts of solder may cause bridging between the terminals.


- (5) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.
- 2. Mounting
- (1) Do not apply excessive force, preferably 4.9N max. (Ref. 500gf) when the trimmer potentiometer is mounted to the PCB.
- (2) Do not warp and/or bend PC board to prevent trimmer potentiometer from breakage.
- (3) In chip placers, the recommended size of the cylindrical pick-up nozzle should be outer dimension 1.5-1.8mm dia. and inner dimension 1.3mm dia.
- 3. Cleaning
- In case there is flux on the resistive element, clean sufficiently with cleaning solvents and completely remove all residual flux.
- (2) Isopropyl-alcohol and Ethyl-alcohol are applicable solvents for cleaning. If you use any other types of solvents, please evaluate performance with your product.

■ Soldering Profile


Reflow Soldering Profile

1. Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu)

		Standard Profile					Limit Profile					
Cartas	Pre-heating		Heating		Peak Cycle of		Pre-heating		Heating		Peak Temperature	Cycle of
Series	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	Temperature (T3)	Reflow	Temp. (T1)	Time (t1)	Temp. (T4)	Time (t3)	(T5)	Reflow
	°C	sec.	°C	sec.	°C	Time	°C	sec.	°C	sec.	°C	Time
PVA2	150 to 180	60 to 120	220	30 to 60	245±3	2	150 to 180	60 to 120	220	30 to 60	260 +5/-0	2
PVZ2****C**	150 to 180	60 to 120	220	30 to 60	245±3	2	150 to 180	60 to 120	220	30 to 60	260	2

2. Soldering profile for Eutectic solder (63Sn/37Pb) (Limit profile: refer to 1)

	Standard Profile							
Series	Pre-h	eating	Hea	ting	Peak Temperature	Cycle of		
	Temp. (T1) Time (t1)		Temp. (T2)	Time (t2)	(T3)	Reflow		
	°C	sec.	°C	sec.	°C	Time		
PVA2 PVZ2****C**	150	60 to 120	183	30	230	1		

Soldering Iron

	Standard Condition							
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Soldering Iron				
	°C	sec.	W	Time				
PVA2 PVZ2****C**	350±10	3 max.	30 max.	1				

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in driver slot. We recommend the screwdriver below.
 - * Recommended screwdriver for manual adjustment Murata P/N: KMDR190
- 2. The screwdriver should be set in the products vertically, do not apply more than 4.9N (Ref. 500gf) of twist and stress after mounting onto PCB to prevent contact intermittence. If excessive force is applied, the trimmer potentiometer may not function.

■ Notice (Other)

1. Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.

- 3. Please use within the effective rotational angle. The trimmer potentiometer does not have a mechanical stop for over rotation. In cases out of effective rotational angle, the trimmer potentiometer may not function.
- 4. When using a lock paint to fix slot position or cover the rotor, please evaluate performance with your product. Lock paint may cause corrosion or electrical contact problems.
- 2. Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

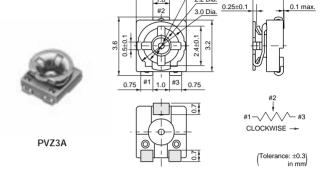
Trimmer Potentiometers

SMD Open Type 3mm Size PVZ3 Series

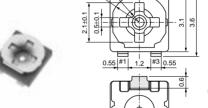
PVZ3 Series

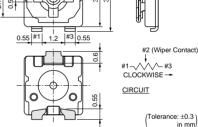
■ Features

- 1. Excellent solderability characteristics are achieved via special plating techniques on each
- 2. Specially designed substrate prevents wicking of flux onto the top of the part body.
- 3. Funnel shaped adjustment slot allows for in-process automatic adjustment. (PVZ3A/PVZ3K Series)
- 4. High-heat resistance type is available (PVZ3A_C01/PVZ3G_C01/PVZ3K_E01).
- 5. Enlarged bottom termination enhances soldering strength while reducing the necessary land area required promoting high-density PCB mounting (PVZ3A/PVZ3G Series).
- 6. The standard position of driver plate is adjusted at the center normally, but another position is also available.
- 7. This product meets PB-free standards.


■ Applications

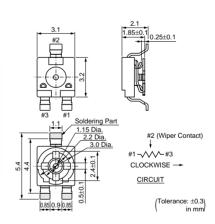
1. Optical pick up 2. Cordless telephones


3. CD players 4. FDD 5. Motor 6. CD-ROMs


8. TFT-LCD TV sets 7. Car stereos

9. Headphone stereos

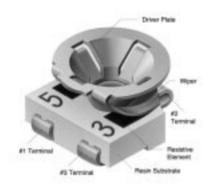
1.15 Dia 2.2 Dia.



PVZ3G

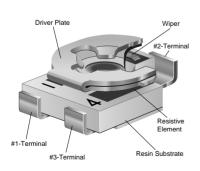
PVZ3K

Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PVZ3□221C01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	220ohm ±30%	±500
PVZ3□471C01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	470ohm ±30%	±500
PVZ3□102C01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	1k ohm ±30%	±500
PVZ3□222C01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	2.2k ohm ±30%	±500
PVZ3□472C01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	4.7k ohm ±30%	±500
PVZ3□103C01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	10k ohm ±30%	±500
PVZ3□223C01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	22k ohm ±30%	±500
PVZ3□473C01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	47k ohm ±30%	±500
PVZ3□104C01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	100k ohm ±30%	±500
PVZ3 224C01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	220k ohm ±30%	±500

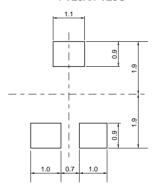


Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PVZ3□474C01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	470k ohm ±30%	±500
PVZ3□105C01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	1M ohm ±30%	±500
PVZ3□225C01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	2.2M ohm ±30%	±500
PVZ3□221E01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	220ohm ±30%	±500
PVZ3□471E01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	470ohm ±30%	±500
PVZ3□102E01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	1k ohm ±30%	±500
PVZ3□222E01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	2.2k ohm ±30%	±500
PVZ3□472E01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	4.7k ohm ±30%	±500
PVZ3□103E01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	10k ohm ±30%	±500
PVZ3□223E01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	22k ohm ±30%	±500
PVZ3□473E01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	47k ohm ±30%	±500
PVZ3□104E01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	100k ohm ±30%	±500
PVZ3□224E01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	220k ohm ±30%	±500
PVZ3□474E01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	470k ohm ±30%	±500
PVZ3□105E01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	1M ohm ±30%	±500
PVZ3□225E01	0.1(50°C)	Reflow/Soldering Iron	1(230°±10°)	2.2M ohm ±30%	±500

^{*}Available for other resistance value.


■ Construction

PVZ3A


■ Construction

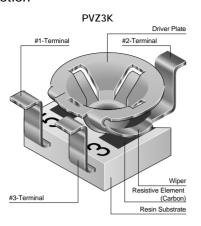
PVZ3G

■ Standard Land Pattern

PVZ3A/PVZ3G

(Tolerance : ±0.1) in mm)

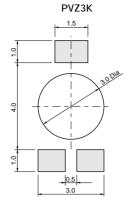
Operating Temperature Range: -25 to 85 °C


The blank column is filled with the code of adjustment direction and lead type A (top adjustment), G (top adjustment and thin type),

K (rear adjustment).

A and G are only for C01.

K is only for E01.


■ Construction

■ Characteristics

Humidity Exposure	Res. Change: +10, -2%
High Temperature Exposure	Res. Change: R≦100kohm···+2, -10% 100kohm <r···+2, -15%<="" td=""></r···+2,>
Humidity Load Life	Res. Change: ±10%
Load Life	Res. Change: R≦100kohm+2, -10% 100kohm <r+2, -15%<="" td=""></r+2,>
Temperature Cycle	Res. Change: ±5%
Rotational Life	Res. Change: ±10% (10 cycles)

■ Standard Land Pattern

(Tolerance : ±0.1) in mm)

PVZ3 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- 6. If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior

The trimmer potentiometer should not be used under the following environmental conditions:

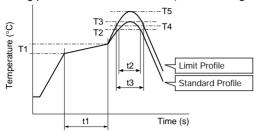
- Notice (Rating)
- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- 2. The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.
- 3. If the trimmer potentiometer is used in DC and high humidity conditions, please connect wiper (#2) for plus and resistive element (#1 or #3) for minus.

- (1) Corrosive gaseous atmosphere (Ex. Chlorine gas. Hydrogen sulfide gas. Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

■ Notice (Soldering and Mounting)

- 1. Soldering
- (1) Soldering conditions Refer to the temperature profile. If the soldering conditions are not suitable, e.g., excessive time and/or excessive temperature, the trimmer potentiometer may deviate from the specified characteristics. Do not use flow soldering method (dipping). If you use the flow soldering method, the trimmer potentiometer may not function.
- (2) Use our standard land dimension. Excessive land area causes displacement due to the effect of the surface tension of the solder. Insufficient land area leads to insufficient soldering strength of the chip.
- (3) Apply the appropriate amount of solder paste. The thickness of solder paste should be printed from 100 micro m to 150 micro m and the dimension of land pattern used should be Murata's standard land pattern at reflow soldering. Insufficient amounts of solder can lead to insufficient soldering strength on PCB. Excessive amounts of solder may cause bridging

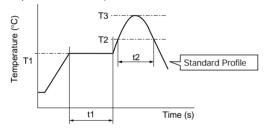
between the terminals.


- (4) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged. (PVZ Series only)
- (1) Do not apply excessive force, preferably 4.9N max. (Ref. 500gf) when the trimmer potentiometer is mounted to the PCB.
- (2) Do not warp and/or bend PC board to prevent trimmer potentiometer from breakage.
- (3) In chip placers, the recommended size of the cylindrical pick-up nozzle should be outer dimension 2.5-2.8mm dia. and inner dimension 2mm dia.
- 3. Cleaning
- (1) In case there is flux on the resistive element, clean sufficiently with cleaning solvents and completely remove all residual flux.
- (2) Isopropyl-alcohol and Ethyl-alcohol are applicable solvents for cleaning. If you use any other types of solvents, please evaluate performance with your product.

PVZ3 Series Notice

■ Soldering Profile

Reflow Soldering Profile


1. Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu)

		Standard Profile						Limit Profile				
	Pre-heating		Heating		Peak Cycle of		Pre-heating		Heating		Peak Temperature	Cycle of
Series	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	mperature (T3) Reflow	Temp. (T1)	Time (t1)	Temp. (T4)	Time (t3)	(T5)	Reflow
	°C	sec.	°C	sec.	°C	Time	°C	sec.	°C	sec.	°C	Time
PVZ3xxxxCxx	150 to 180	60 to 120	220	30 to 60	245±3	2	150 to 180	60 to 120	220	30 to 60	260	2
PVZ3GxxxFxx	150 to 180	60 to 120	220	30 to 60	245±3	2	150 to 180	60 to 120	220	30 to 60	260	2
PVZ3xxxxExx	150 to 180	60 to 120	220	30 to 60	245±3	2	150 to 180	60 to 120	220	30 to 60	260	2

2. Soldering profile for Eutectic solder (63Sn/37Pb)

(Limit profile: refer to 1)

		Standard Profile									
Series	Pre-h	eating	Hea	ting	Peak Temperature	Cycle of					
	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	Reflow					
	°C	sec.	°C	sec.	°C	Time					
PVZ3xxxxCxx PVZ3GxxxFxx PVZ3xxxxExx	150	60 to 120	183	30	230 max.	1					

Soldering Iron

	Standard Condition								
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Solder Iron					
	°C	sec.	W	Time					
PVZ3xxxxCxx PVZ3GxxxFxx PVZ3xxxxExx	350±10	3 max.	30 max.	1					

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in driver slot. We recommend the screwdrivers below.
 - * Recommended screwdriver for manual adjustment >VESSEL MFG.: NO.9000+1.7x30 (Murata P/N: KMDR080)
 - * Recommended screwdriver for automatic adjustment >TORAY MFG.: JB-2225 (Murata P/N: KMBT070)
- Don't apply more than 4.9N (Ref.; 500gf) of twist and stress after mounting onto PCB to prevent contact intermittence. If excessive force is applied, the trimmer potentiometer may not function.
- Please use within the effective rotational angle.
 Do not have a mechanical stop for over rotation.
 In cases out of effective rotational angle,
 the trimmer potentiometer may not function.
- 4. When using a lock paint to fix slot position or cover the rotor, please evaluate performance by your product. Lock paint may cause corrosion or electrical contact problems.

■ Notice (Other)

- Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.
- Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

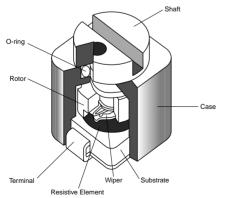
Trimmer Potentiometers

SMD Sealed Type 2mm Size PVF2 Series

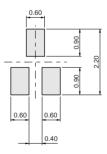
■ Features

- 1. Ultra-compact size of "2x2x2.3mm"
- 2. A sealed structure prevents liquids (water, cleaning liquid, sweat, etc.) from entering.
- 3. A rotation service life of 100 cycles is guaranteed.
- 4. Can be automatically mounted using a chip placer, as well as mounted using reflow soldering.

■ Applications


- 1. Hearing aids
- 2. Ultra-compact sensors or the like
- 3. Applications requiring ultra-compactness, and a sealed structure

0	8		0.50 0.50 0.30 0.50 0.30 0.50 0.30 0.50 0.30
		CIRCUIT	
		#2 (Wiper) #1———#3	/Tolerance: ±0.10 \
		Clockwise ——►	in mm/


Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PVF2A501A11	0.001(50°C)	Reflow/Soldering Iron	1(210°±10°)	500ohm ±30%	±500
PVF2A102A11	0.001(50°C)	Reflow/Soldering Iron	1(210°±10°)	1k ohm ±30%	±500
PVF2A202A11	0.001(50°C)	Reflow/Soldering Iron	1(210°±10°)	2k ohm ±30%	±500
PVF2A502A11	0.001(50°C)	Reflow/Soldering Iron	1(210°±10°)	5k ohm ±30%	±500
PVF2A103A11	0.001(50°C)	Reflow/Soldering Iron	1(210°±10°)	10k ohm ±30%	±500
PVF2A203A11	0.001(50°C)	Reflow/Soldering Iron	1(210°±10°)	20k ohm ±30%	±500
PVF2A503A11	0.001(50°C)	Reflow/Soldering Iron	1(210°±10°)	50k ohm ±30%	±500
PVF2A104A11	0.001(50°C)	Reflow/Soldering Iron	1(210°±10°)	100k ohm ±30%	±500
PVF2A204A11	0.001(50°C)	Reflow/Soldering Iron	1(210°±10°)	200k ohm ±30%	±500
PVF2A504A11	0.001(50°C)	Reflow/Soldering Iron	1(210°±10°)	500k ohm ±30%	±500
PVF2A105A11	0.001(50°C)	Reflow/Soldering Iron	1(210°±10°)	1M ohm ±30%	±500

Operating Temperature Range: -25 to 60 °C

■ Construction

■ Standard Land Pattern

(Tolerance : ±0.10 in mm)

■ Characteristics

- Characteristics	
Temperature Cycle	ΔTR : ±5%
Humidity	ΔTR : ±15, -2%
Vibration	ΔV.S.S. : ±5%
Shock (100G)	ΔV.S.S. : ±5%
Temperature Load Life	ΔTR : +2, -10%
Low Temperature Exposure	ΔTR : ±3%
Rotational Life	ΔTR : ±10% (100 cycles)

 $\begin{array}{lll} \Delta TR & : Total \ Resistance \ Change \\ \Delta V.S.S.: \ Voltage \ Setting \ Stability \end{array}$

sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

PVF2 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

The trimmer potentiometer should not be used under the following environmental conditions:

- Notice (Rating)
- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- 2. The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.
- If the trimmer potentiometer is used in DC and high humidity conditions, please connect wiper (#2) for plus and resistive element (#1 or #3) for minus.

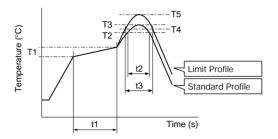
- Corrosive gaseous atmosphere
 (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid
 (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

■ Notice (Soldering and Mounting)

- 1. Soldering
- Soldering condition
 Refer to the temperature profile.
 If the soldering conditions are not suitable,
 e.g., excessive time and/or excessive
 temperature, the trimmer potentiometer may deviate from the specified characteristics.
- (2) Use our standard land dimension. Excessive land area causes displacement due to the effect of the surface tension of the solder. Insufficient land area leads to insufficient soldering strength of the chip.
- (3) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.
- (4) Cannot be soldered using the flow soldering method. If you use the flow soldering method, the trimmer potentiometer may not function.

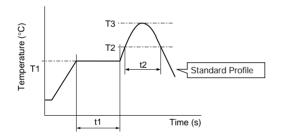
2. Mounting

- (1) Use our standard land dimension. Excessive land area causes displacement due to the effect of the surface tension of the solder. Insufficient land area leads to insufficient soldering strength of the chip.
- (2) Do not apply excessive force (preferably 4.9N (Ref.; 500gf) max.), when the trimmer potentiometer is mounted to the PCB.
- (3) Do not warp and/or bend PC board to prevent trimmer potentiometer from breakage.
- 3. Cleaning
- (1) Isopropyl-alcohol and Ethyl-alcohol are applicable solvents for cleaning. If you use any other types of solvents, please consult with a Murata factory representative prior to using.


• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications.

PVF2 Series Notice

■ Soldering Profile


Reflow Soldering Profile

1. Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu)

Standard Profile						Limit Profile						
Series	Pre-he	eating	Hea	ting	Peak Temperature	Cycle	Pre-he	eating	Hea	ting	Peak Temperature	Cycle
Selles	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	of Reflow	Temp. (T1)	Time (t1)	Temp. (T4)	Time (t3)	(T5)	of Reflow
	°C	sec.	°C	sec.	°C	Time	°C	sec.	°C	sec.	°C	Time
PVF2	150 to 180	60 to 120	200	30	230 max.	1	150 to 180	60 to 120	200	30	230 max.	1

2. Soldering profile for Eutectic solder (63Sn/37Pb) (Limit profile: refer to 1)

		Standard Profile									
Series	Pre-heating		Hea	ting	Peak Temperature	Cycle					
Series	Temp. (T1)	Time (t1) Temp. (T2) Time (Time (t2)	(T3)	of Reflow					
	°C	sec.	°C	sec.	°C	Time					
PVF2	150	60 to 120	183	30	230 max.	1					

Soldering Iron

		Standard	Condition	
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Soldering Iron
	°C	sec.	W	Time
PVF2	260	3 max.	30 max.	1

■ Notice (Handling)

- Use suitable screwdrivers that fit comfortably in driver slot.
- Do not apply more than 4.9N (Ref. 500gf) of twist and stress after mounting onto PCB to prevent contact intermittence. If excessive force is applied, the trimmer potentiometer may not function.
- Notice (Other)
- Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.
- 2. Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

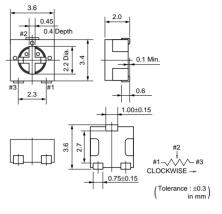
- The rotational torque at the position of the adjustment range should not exceed the stop strength.
- When using a lock paint to fix slot position, please use adhesive resin without chlorine or sulfur (Three-bond "1401 series").

Trimmer Potentiometers

muRata

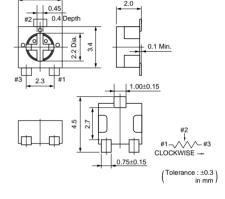
SMD Sealed Type 3mm Size PVG3 Series

■ Features

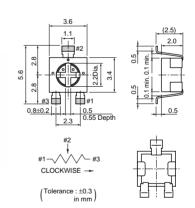

- 1. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 2. Driver plate with cross-slot is suitable for automatic adjustment.
- 3. Rotor with large diameter and deep groove improves driver insertion.
- 4. J-hook, Gull wing terminal shape, rear and through hole terminal shape.
- 5. 3mm and 4mm land pattern can be used without change. (Gull wing is suitable for 4mm size land pattern.)
- 6. Heat resistance performance enables high temperature peak re-flow soldering.

■ Applications

- 1. Small sensors
- 2. Optical Transceiver Module
- 3. Copier
- 4. Printer
- 5. Compact Power Supply
- 6. Wireless Radio module



PVG3A



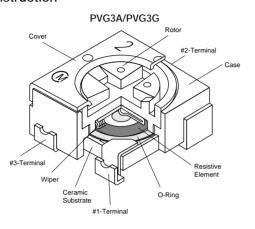
PVG3G

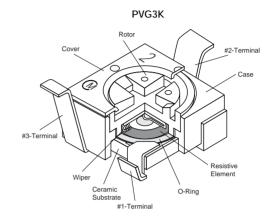
PVG3K

Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PVG3□100C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	10ohm ±20%	±150
PVG3□200C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10)	20ohm ±20%	±150
PVG3□500C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	50ohm ±20%	±150
PVG3□101C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	100ohm ±20%	±150
PVG3□201C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	200ohm ±20%	±150
PVG3□501C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	500ohm ±20%	±150
PVG3□102C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	1k ohm ±20%	±150
PVG3□202C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	2k ohm ±20%	±150
PVG3□502C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	5k ohm ±20%	±150
PVG3□103C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	10k ohm ±20%	±150
PVG3□203C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	20k ohm ±20%	±150
PVG3□503C01	0.25(70°C)	Reflow/Soldering Iron	1(210°+10°)	50k ohm +20%	+150

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

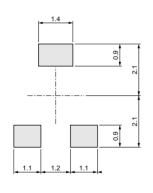
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

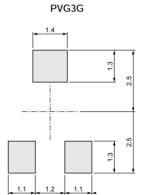

Continued from the	preceding	page
--------------------	-----------	------


	. 0.0				
Part Number	Power Rating (W)	Soldering Method	Soldering Method Number of Turns (Effective Rotation Angle)		TCR (ppm/°C)
PVG3□104C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	100k ohm ±20%	±150
PVG3□204C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	200k ohm ±20%	±150
PVG3□504C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	500k ohm ±20%	±150
PVG3□105C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	1M ohm ±20%	±150
PVG3□205C01	0.25(70°C)	Reflow/Soldering Iron	1(210°±10°)	2M ohm ±20%	±150

Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$

The blank column is filled with the code of adjustment direction and lead type A (top, J-hook), G (top, gull-wing), or K (rear).


■ Construction





■ Standard Land Pattern

Continued on the following page.

■ Characteristics

Temperature Cycle	ΔTR : ±2% ΔV.S.S.: ±1%
Humidity	ΔTR : $\pm 2\%$ $\Delta V.S.S.$: $\pm 1\%$ IR : 10M ohm min.
Vibration (20G)	ΔTR : ±1% ΔV.S.S.: ±1%
Shock (100G)	ΔTR : ±1% ΔV.S.S.: ±1%
Temperature Load Life	ΔTR : ±3% or 3 ohm max., whichever is greater $\Delta V.S.S.$: ±1%
Low Temperature Exposure	ΔTR : ±2% ΔV.S.S.: ±2%
High Temperature Exposure	ΔTR : ±3% ΔV.S.S.: ±2%
Rotational Life	ΔTR : R≦100 kohm ··· ±3% or 2 ohm max., whichever is greater R>100 kohm ··· +0/-10% (50 cycles)

ΔTR : Total Resistance Change $\Delta \text{V.S.S.:}$ Voltage Setting Stability IR : Insulation Resistance : Standard Total Resistance

sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

PVG3 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

The trimmer potentiometer should not be used under the following environmental conditions:

- Notice (Rating)
- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- 2. The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.

- Corrosive gaseous atmosphere
 (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid
 (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

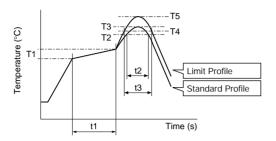
■ Notice (Soldering and Mounting)

- 1. Soldering
- (1) Soldering conditions Refer to the temperature profile. If the soldering conditions are not suitable, e.g., excessive time and/or excessive temperature, the trimmer potentiometer may deviate from the specified characteristics.
- (2) Cannot be soldered using the flow soldering method. If you use the flow soldering method, the trimmer potentiometer may not function.
- (3) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.
- (4) Apply the appropriate amount of solder paste. If the amount of solder paste applied to the land is insufficient, the required adhesive strength cannot be obtained. If an excessive amount of solder paste is applied, solder bridging or flux overflow to the resistive element surface can occur.

2. Mounting

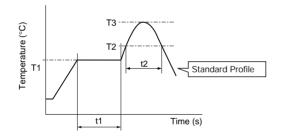
- (1) Use our standard land dimension. Excessive land area causes displacement due to the effect of the surface tension of the solder. Insufficient land area leads to insufficient soldering strength of the chip.
- (2) Do not apply excessive force, preferably 4.9N max. (Ref. 500gf) when the trimmer potentiometer is mounted to the PCB.
- (3) Do not warp and/or bend PC board to prevent trimmer potentiometer from breakage.
- (4) In chip placers, the size of the cylindrical pick-up nozzle should be outer dimension 2.5-3.0mm dia. and inner dimension 2.0-2.5mm dia.
- 3. Cleaning

Isopropyl-alcohol and Ethyl-alcohol are applicable solvents for cleaning. If you use any other types of solvents, please consult with a Murata factory representative prior to using.



PVG3 Series Notice

■ Soldering Profile


Reflow Soldering Profile

1. Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu)

Series			Standa	rd Profile			Limit Profile					
	Pre-heating		Heating		Peak Cycle		Pre-heating		Heating		Peak Temperature	Cycle
	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	Temperature (T3)	of Reflow	Temp. (T1)	Time (t1)	Temp. (T4)	Time (t3)	(T5)	of Reflow
	°C	sec.	°C	sec.	°C	Time	°C	sec.	°C	sec.	°C	Time
PVG3	150 to 180	60 to 120	220	30 to 60	245±3	1	150 to 180	60 to 120	230	30 to 50	260 +5/-0	2

2. Soldering profile for Eutectic solder (63Sn/37Pb) (Limit profile: refer to 1)

Series	Standard Profile								
	Pre-he	eating	Hea	ting	Peak Temperature	Cycle			
	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	of Reflow			
	°C	sec.	°C	sec.	°C	Time			
PVG3	150	60 to 120	183	30	230	1			

Soldering Iron

	Standard Condition								
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Soldering Iron					
	°C	sec.	W	Time					
PVG3	350±10	3 max.	30 max.	1					

■ Notice (Handling)

- Use suitable screwdrivers that fit comfortably in driver slot.
 - * Recommended screwdriver for manual adjustment TORAY INDUSTRIES, INC.: SA-2225 (Murata P/N: KMDR070)
 - * Recommended screwdriver bit for automatic adjustment

TORAY INDUSTRIES, INC.: JB-2225 (Mutata P/N: KMBT070)

We can supply the screwdrivers above.

If you place order, please specify the Murata P/N.

Do not apply more than 9.8N (Ref. 1kgf) of twist and stress after mounting onto PCB to prevent contact intermittence.

■ Notice (Other)

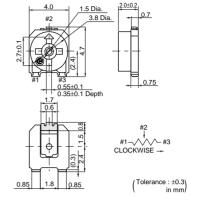
 Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.

- When adjusting with an adjustment tool, the applied force to the adjustment screw should not exceed
 N (Ref. 500gf). If excessive force is applied, the trimmer potentiometer may not function due to damage.
- The rotational torque at the position of the adjustment range should not exceed the stop strength.
- 5. When using a lock paint to fix slot position, please use adhesive resin without chlorine or sulfur (Three-bond "1401 series") and evaluate performance with your product. Lock paint may cause corrosion or electrical contact problems.
- Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

Trimmer Potentiometers

SMD Sealed Type 4mm Size PVM4 Series

■ Features

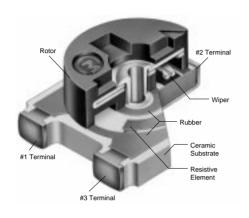

- 1. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 2. Available for flow and reflow soldering method while maintaining unique sealed construction.
- 3. Simple construction by 3-piece parts achieves high reliability.
- 4. Large diameter slot of rotor improves driver insertion.
- 5. Available for cleaning after soldering
- 6. High grade version is available (PVM4AxxxD01).

■ Applications

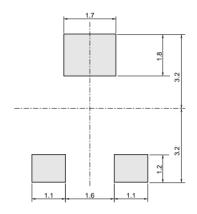
1. Security 2. OA, FA equipments 3. Measuring equipments 4. Professional cameras

5. Encorders 6. Sensors

Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PVM4A101C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	100ohm ±25%	±250
PVM4A201C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	200ohm ±25%	±250
PVM4A301C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	300ohm ±25%	±250
PVM4A501C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	500ohm ±25%	±250
PVM4A102C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	1k ohm ±25%	±250
PVM4A202C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	2k ohm ±25%	±250
PVM4A302C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	3k ohm ±25%	±250
PVM4A502C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	5k ohm ±25%	±250
PVM4A103C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	10k ohm ±25%	±250
PVM4A203C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	20k ohm ±25%	±250
PVM4A303C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	30k ohm ±25%	±250
PVM4A503C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	50k ohm ±25%	±250
PVM4A104C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	100k ohm ±25%	±250
PVM4A204C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	200k ohm ±25%	±250
PVM4A304C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	300k ohm ±25%	±250
PVM4A504C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	500k ohm ±25%	±250
PVM4A105C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	1M ohm ±25%	±250
PVM4A205C01	0.1(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	2M ohm ±25%	±250
PVM4A101D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	100ohm ±20%	±100
PVM4A201D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	200ohm ±20%	±100
PVM4A301D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	300ohm ±20%	±100
PVM4A501D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	500ohm ±20%	±100
PVM4A102D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	1k ohm ±20%	±200
PVM4A202D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	2k ohm ±20%	±200
PVM4A302D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	3k ohm ±20%	±200
PVM4A502D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	5k ohm ±20%	±200
PVM4A103D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	10k ohm ±20%	±150
PVM4A203D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	20k ohm ±20%	±150
PVM4A303D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	30k ohm ±20%	±150
PVM4A503D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	50k ohm ±20%	±150
PVM4A104D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	100k ohm ±20%	±150
PVM4A204D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	200k ohm ±20%	±150
PVM4A304D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	300k ohm ±20%	±150


Continued from the preceding page.

Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)						
PVM4A504D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	500k ohm ±20%	±150						
PVM4A105D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	1M ohm ±20%	±150						
PVM4A205D01	0.25(70°C)	Flow/Reflow/Soldering Iron	1(240°±10°)	2M ohm ±20%	±150						


Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$

The last three digits express the individual specification codes. C01 for standard type and D01 for high-liability type.

■ Construction

■ Standard Land Pattern

■ Characteristics

- Ondraotoristios		
Item	PVM4A□□□C01	PVM4A□□□D01
Humidity Exposure	Res. Change: ±3%	Res. Change: ±2%
High Temperature Exposure	Res. Change: ±3%	Res. Change: ±2%
Humidity Load Life	Res. Change: ±3%	Res. Change: ±3%
Temperature Load Life	Res. Change: ±3%	Res. Change: ±3%
Temperature Cycle	Res. Change: ±3%	Res. Change: ±2%
Rotational Life	Res. Change: ±10% (20 cycles)	Res. Change: ±5% (100 cycles)

sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

PVM4 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

The trimmer potentiometer should not be used under the following environmental conditions:

- Notice (Rating)
- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- 2. The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.

- Corrosive gaseous atmosphere
 (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid
 (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

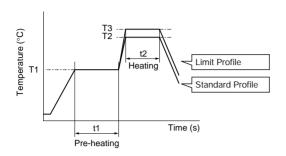
■ Notice (Soldering and Mounting)

- 1. Soldering
- (1) Can be soldered by reflow soldering method, flow soldering method, and soldering iron.
- (2) Use our standard land dimension. Excessive land area causes displacement due to the effect of the surface tension of the solder. Insufficient land area leads to insufficient soldering strength of the chip.
- (3) Soldering condition Refer to the temperature profile. If the soldering conditions are not suitable, e.g., excessive time and/or excessive temperature, the trimmer potentiometer may deviate from the specified characteristics.
- (4) Apply the appropriate amount of solder paste. The thickness of solder paste should be printed from 100 micro m to 150 micro m and the dimension of land pattern used should be Murata's standard land pattern at reflow soldering. Insufficient amounts of solder can lead to insufficient soldering strength on PCB. Excessive amounts of solder may cause bridging between the terminals.

- (5) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.
- 2. Mounting
 - (1) Do not apply excessive force, preferably 9.8N max. (Ref. 1kgf) when the trimmer potentiometer is mounted to the PCB.
 - (2) Do not warp and/or bend PC board to prevent trimmer potentiometer from breakage.
 - (3) In chip placers, the recommended size of the cylindrical pick-up nozzle should be outer dimension 4.0mm dia. and inner dimension 2.0mm dia.
- 3. Cleaning

Isopropyl alcohol and Ethyl alcohol are available materials for cleaning.

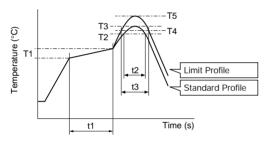
For other materials, please consult with a Murata factory representative prior to using.



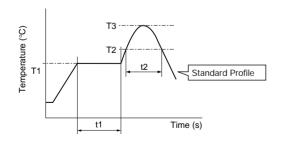
PVM4 Series Notice

■ Soldering Profile

Flow Soldering Profile


Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu), Eutectic solder (63Sn/37Pb)

			Standard Profil	е		Limit Profile				
Series	Pre-heating		Heating		Cycle	Pre-heating		Heating		Cycle
Series	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	of Flow	Temp. (T1)	Time (t1)	Temp. (T3)	Time (t2)	of Flow
	°C	sec.	°C	sec.	Time	°C	sec.	°C	sec.	Time
PVM4	150	60 to 120	250	5 max.	1	150	60 to 120	265±3	5 max.	2


Reflow Soldering Profile

1. Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu)

Series			Stand	ard Profile		Limit Profile						
	Pre-heating		Heating Peak Temperature		Cycle	Pre-heating		Heating		Peak Temperature	Cycle	
	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	of Reflow	Temp. (T1)	Time (t1)	Temp. (T4)	Time (t3)	(T5)	of Reflow
	°C	sec.	°C	sec.	°C	Time	°C	sec.	°C	sec.	°C	Time
PVM4	150 to 180	60 to 120	220	30 to 60	245±3	2	150 to 180	60 to 120	230	30 to 50	260 +5/-0	2

2. Soldering profile for Eutectic solder (63Sn/37Pb) (Limit profile: refer to 1)

		Standard Profile							
Series	Pre-heating		Hea	ting	Peak Temperature	Cycle			
	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	of Reflow			
	°C	sec.	°C	sec.	°C	Time			
PVM4	150	60 to 120	183	30	230	1			

Soldering Iron

	Standard Condition					
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Soldering Iron		
	°C	sec.	w	Time		
PVM4	350±10	3 max.	30 max.	1		

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

PVM4 Series Notice

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in driver slot. We recommend the screwdriver below.
 - * Recommended screwdriver for manual adjustment VESSEL MFG.: NO. 9000-2.6x30 (Murata P/N: KMDR120)

We can supply the screwdrivers above.

If you place order, please specify the Murata P/N.

- Do not apply more than 4.9N (Ref. 500gf) of twist and stress after mounting onto PCB to prevent contact intermittence. If excessive force is applied, the trimmer potentiometer may not function.
- Notice (Other)
- Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.
- Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

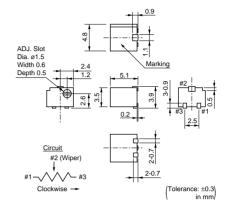
- Please use within the effective rotational angle.
 The potentiometer does not have a mechanical stop for over rotation. In cases out of effective rotational angle, the trimmer potentiometer may not function.
- 4. When using a lock paint to fix slot position, please use adhesive resin without chlorine or sulfur (Three-bond "1401 series") and evaluate performance with your product. Lock paint may cause corrosion or electrical contact problems.

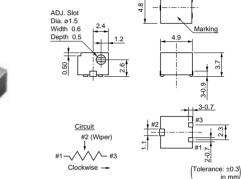
SMD Sealed Type Multi-turn PVG5 Series

■ Features

- 1. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 2. Available with reflow soldering method
- 3. Available for ultrasonic cleaning after soldering
- 4. Clutch mechanism prevents excessive wiper rotation.
- 5. Both Top and side adjustment directions
- 6. Ultra smaller volume (1/5-1/2) than leaded multi-turn potentiometer.

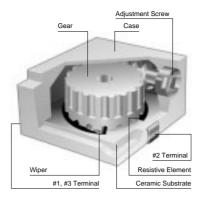
■ Applications


- 1. Measuring instruments
- 2. OA equipment
- 3. Medical equipment
- 4. Power supply


- 5. Sensors
- 6. Base station for cellular phone

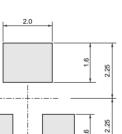
PVG5A

PVG5H

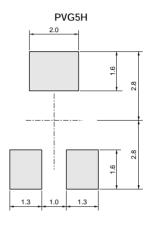


Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PVG5□100C03	0.25(70°C)	Reflow/Soldering Iron	11	10ohm ±10%	±150
PVG5□200C03	0.25(70°C)	Reflow/Soldering Iron	11	20ohm ±10%	±150
PVG5□500C03	0.25(70°C)	Reflow/Soldering Iron	11	50ohm ±10%	±150
PVG5□101C03	0.25(70°C)	Reflow/Soldering Iron	11	100ohm ±10%	±150
PVG5□201C03	0.25(70°C)	Reflow/Soldering Iron	11	200ohm ±10%	±150
PVG5□501C03	0.25(70°C)	Reflow/Soldering Iron	11	500ohm ±10%	±150
PVG5□102C03	0.25(70°C)	Reflow/Soldering Iron	11	1k ohm ±10%	±150
PVG5□202C03	0.25(70°C)	Reflow/Soldering Iron	11	2k ohm ±10%	±150
PVG5□502C03	0.25(70°C)	Reflow/Soldering Iron	11	5k ohm ±10%	±150
PVG5□103C03	0.25(70°C)	Reflow/Soldering Iron	11	10k ohm ±10%	±150
PVG5□203C03	0.25(70°C)	Reflow/Soldering Iron	11	20k ohm ±10%	±150
PVG5□503C03	0.25(70°C)	Reflow/Soldering Iron	11	50k ohm ±10%	±150
PVG5□104C03	0.25(70°C)	Reflow/Soldering Iron	11	100k ohm ±10%	±150
PVG5□204C03	0.25(70°C)	Reflow/Soldering Iron	11	200k ohm ±10%	±150
PVG5□504C03	0.25(70°C)	Reflow/Soldering Iron	11	500k ohm ±10%	±150
PVG5□105C03	0.25(70°C)	Reflow/Soldering Iron	11	1M ohm ±10%	±150
PVG5□205C03	0.25(70°C)	Reflow/Soldering Iron	11	2M ohm ±10%	±150

Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$


The blank column is filled with the code of adjustment direction A (top) or H (side).

■ Construction



PVG5A

■ Standard Land Pattern

(Tolerance: ±0.1)

(Tolerance: ±0.1)

■ Characteristics

Temperature Cycle	ΔTR : ±2% ΔV.S.S.: ±1%
Humidity	ΔTR : $\pm 2\%$ IR : 10M ohm min.
Vibration (20G)	ΔTR : ±1% ΔV.S.S.: ±1%
Shock (100G)	ΔTR : ±1% ΔV.S.S.: ±1%
Temperature Load Life	$\Delta TR = \pm 3\%$ or 3 ohm max., whichever is greater $\Delta V.S.S.: \pm 1\%$
Low Temperature Exposure	ΔTR : ±1% ΔV.S.S.: ±1%
High Temperature Exposure	ΔTR : ±2% ΔV.S.S.: ±1%
Rotational Life	ΔTR : ±3% or 3 ohm max., whichever is greater (100 cycles)

ΔTR : Total Resistance Change $\Delta \text{V.S.S.:}$ Voltage Setting Stability : Insulation Resistance

PVG5 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

The trimmer potentiometer should not be used under the following environmental conditions:

- Notice (Rating)
- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- 2. The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.

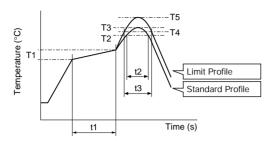
- Corrosive gaseous atmosphere
 (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid
 (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

■ Notice (Soldering and Mounting)

- 1. Soldering
- Soldering condition
 Refer to the temperature profile.
 If the soldering conditions are not suitable,
 e.g., excessive time and/or excessive
 temperature, the trimmer capacitor may deviate from the specified characteristics.
- (2) Cannot be soldered using the flow soldering method. If you use the flow soldering method, the trimmer potentiometer may not function.
- (3) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.
- (4) Insufficient amounts of solder can lead to insufficient soldering strength on PCB. Excessive amounts of solder may cause bridging between the terminals.

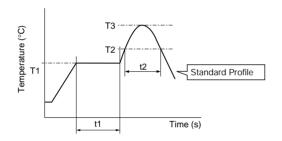
2. Mounting

- (1) Use our standard land dimension. Excessive land area causes displacement due to the effect of the surface tension of the solder. Insufficient land area leads to insufficient soldering strength of the chip.
- (2) Do not apply excessive force, preferably 9.8N max. (Ref. 1kgf) when the trimmer potentiometer is mounted to the PCB.
- (3) Do not warp and/or bend PC board to prevent trimmer potentiometer from breakage.
- (4) In chip placers, the recommended size of the cylindrical pick-up nozzle should be outer dimension 4.0mm dia. and inner dimension 2.0mm dia.
- 3. Cleaning
 - Isopropyl-alcohol and Ethyl-alcohol are applicable solvents for cleaning. If you use any other types of solvents, please consult with a Murata factory representative prior to using.


sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

PVG5 Series Notice

■ Soldering Profile


Reflow Soldering Profile

1. Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu)

	Standard Profile					Limit Profile						
Conton	Pre-h	eating	Hea	ting	Peak Temperature	Cycle of	Pre-h	eating	Hea	ting	Peak Temperature	Cycle of
Series	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	Reflow	Temp. (T1)	Time (t1)	Temp. (T4)	Time (t3)	(T5)	Reflow
	°C	sec.	°C	sec.	°C	Time	°C	sec.	°C	sec.	°C	Time
PVG5	150 to 180	60 to 120	220	30 to 60	245±3	2	150 to 180	60 to 120	230	30 to 50	260 +5/-0	2

2. Soldering profile for Eutectic solder (63Sn/37Pb) (Limit profile: refer to 1)

	Standard Profile						
Series	Pre-heating		Heating		Peak Temperature	Cycle of	
	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	(T3)	Reflow	
	°C	sec.	°C	sec.	°C	Time	
PVG5	150	60 to 120	183	30	230	1	

Soldering Iron

_		Standard	Condition	
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Soldering Iron
	°C	sec.	W	Time
PVG5	350±10	3 max.	30 max.	1

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in driver slot. We recommend the screwdrivers below.
 - * Recommended screwdrivers for manual adjustment <PVG5 series>

VESSEL MFG.: NO.9000-1.3x30 (Murata P/N: KMDR130)

We can supply the screwdrivers above. If you place order, please specify Murata P/N.

2. Do not apply more than 9.8N (Ref. 1kgf) of twist and stress after mounting onto PCB to prevent contact intermittence. If excessive force is applied, the trimmer potentiometer may not function.

- 3. When adjusting with a screwdriver, do not apply excessive force, preferable 4.9N max. (Ref 500gf).
- 4. When using a lock paint to fix slot position, please use adhesive resin without chlorine or sulfur (Three-bond "1401 series") and evaluate performance with your product. Lock paint may cause corrosion or electrical problems.

■ Notice (Other)

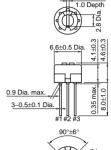
- 1. Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.
- 2. Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

Trimmer Potentiometers

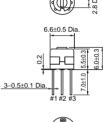
Lead Sealed Type Single-turn PV32 Series

■ Features

- 1. 6 standard terminal styles
- 2. Round shaped body enables smaller area mount than same 6mm square potentiometer.
- 3. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 4. Available for ultrasonic cleaning after soldering
- 5. Flammability: UL94V-0

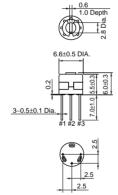

■ Applications

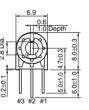
- 1. HDTVs
- 2. Professional cameras
- 3. CATV
- 4. FAX
- 5. Printers
- 6. Sensors

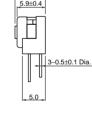


PV32H

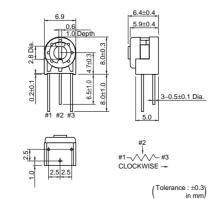
PV32R

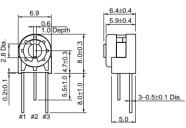


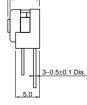

PV32P


(Tolerance: ±0.3)

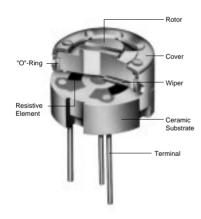
PV32N




(Tolerance : ±0.3) in mm)

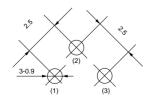


PV32T


Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PV32□100A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	10ohm ±20%	±100
PV32□200A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	20ohm ±20%	±100
PV32□250A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	25ohm ±20%	±100
PV32□500A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	50ohm ±20%	±100
PV32□101A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	100ohm ±20%	±100
PV32□201A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	200ohm ±20%	±100
PV32□251A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	250ohm ±20%	±100
PV32□501A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	500ohm ±20%	±100
PV32□102A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	1k ohm ±20%	±100
PV32□202A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	2k ohm ±20%	±100
PV32□252A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	2.5k ohm ±20%	±100
PV32□502A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	5k ohm ±20%	±100
PV32□103A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	10k ohm ±20%	±100
PV32□203A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	20k ohm ±20%	±100
PV32□253A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	25k ohm ±20%	±100
PV32□503A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	50k ohm ±20%	±100
PV32□104A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	100k ohm ±20%	±100
PV32□204A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	200k ohm ±20%	±100
PV32□254A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	250k ohm ±20%	±100
PV32□504A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	500k ohm ±20%	±100
PV32□105A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	1M ohm ±20%	±100
PV32□205A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	2M ohm ±20%	±100
PV32□505A01	0.5(70°C)	Flow/Soldering Iron	1(230°±5°)	5M ohm ±20%	±100

Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$

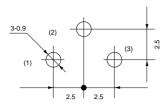
The blank column is filled with the code of adjustment direction and lead type (H, P, R, N, S and T).


The order quantity should be an integral multiple of the "Minimum Quantity".

■ Construction

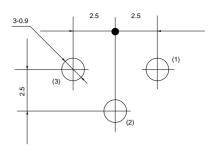
■ Standard Mounting Holes

PV32H

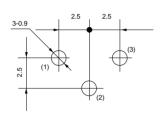

PV32R

(Tolerance: ±0.1 in mm)

muRata


■ Standard Mounting Holes

PV32P/PV32S


(Tolerance: ±0.1 in mm)

PV32N

Tolerance: ±0.1 in mm

PV32T

Tolerance: ±0.1)

■ Characteristics

Temperature Cycle	ΔTR : ±2% ΔV.S.S.: ±1%
Humidity	Δ TR : $\pm 2\%$ IR : 100M ohm min.
Vibration (20G)	ΔTR : ±1% ΔV.S.S.: ±1%
Shock (100G)	ΔTR : ±1% ΔV.S.S.: ±1%
Temperature Load Life	ΔTR : ±2% ΔV.S.S.: ±2%
Low Temperature Exposure	ΔTR : ±2% ΔV.S.S.: ±1%
High Temperature Exposure	ΔTR : ±2% ΔV.S.S.: ±1%
Rotational Life	ΔTR : ±4% (200 cycles)

ΔTR : Total Resistance Change Δ V.S.S.: Voltage Setting Stability : Insulation Resistance

sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

PV32 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

The trimmer potentiometer should not be used under the following environmental conditions:

- Notice (Rating)
- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- 2. The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.

- Corrosive gaseous atmosphere
 (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

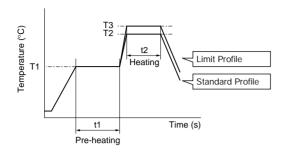
■ Notice (Soldering and Mounting)

- 1. Soldering
- (1) Soldering condition Refer to the temperature profile. If the soldering conditions are not suitable, e.g., excessive time and/or excessive temperature, the trimmer potentiometer may deviate from the specified characteristics.
- (2) To minimize mechanical stress when adjusting, the trimmer potentiometer should be mounted onto PCB without gap.
- (3) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.

2. Mounting

- (1) Use PCB hole to meet the pin of the trimmer potentiometer. If the trimmer potentiometer installs into insufficient PCB hole, the trimmer potentimeter may be damaged by mechanical stress.
- (2) Do not apply excessive force, preferably 9.8N max. (Ref. 1kgf) when the trimmer potentiometer is mounted to the PCB.
- 3. Cleaning

Isopropyl-alcohol and Ethyl-alcohol are applicable solvents for cleaning. If you use any other types of solvents, please consult with a Murata factory representative prior to using.


sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

PV32 Series Notice

■ Soldering Profile

Flow Soldering Profile

Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu), Eutectic solder (63Sn/37Pb)

Series	Standard Profile					Limit Profile				
	Pre-heating		Heating		Cycle	Pre-heating		Heating		Cycle
	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	of Flow	Temp. (T1)	Time (t1)	Temp. (T3)	Time (t2)	of Flow
	°C	sec.	°C	sec.	Time	°C	sec.	°C	sec.	Time
PV32	150	60 to 120	250	5 max.	1	150	60 to 120	260	3 max.	1

Soldering Iron

	Standard Condition							
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Soldering Iron				
	°C	sec.	w	Time				
PV32	350±10	3 max.	30 max.	1				

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in driver slot. We recommend the screwdrivers below.
 - * Recommended screwdriver for manual adjustment <PV32 series>

ENGINEER INC.: DA-40 (Murata P/N: KMDR180)

We can supply the screwdrivers above. If you place an order, please specify the Murata P/N.

 Do not apply more than 9.8N (Ref. 1kgf) of twist and stress after mounting onto PCB to prevent contact intermittence. If excessive force is applied, the trimmer potentiometer may not function.

■ Notice (Other)

- Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.
- Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

- When adjusting with an adjustment tool, the applied force to the adjustment screw should not exceed
 N (Ref. 500gf). If excessive force is applied, the trimmer potentiometer may not function due to damage.
- The rotational torque at the position of the adjustment range should not exceed the stop strength.
- 5. When using a lock paint to fix slot position, please use adhesive resin without chlorine or sulfur (Three-bond "1401 series") and evaluate performance with your product. Lock paint may cause corrosion or electrical contact problems.

Trimmer Potentiometers

muRata

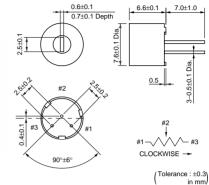
7.0±1.0

Lead Sealed Type Multi-turn PV12/PV37/PV36 Series

PV12 Series

■ Features

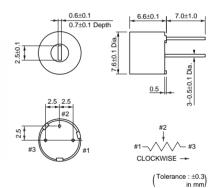
- 1. The unique inner gear system recognizes the position of the center of the shaft of the potentiometer.
- 2. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 3. Available for ultrasonic cleaning after soldering
- 4. Clutch mechanism prevents excessive wiper rotation.

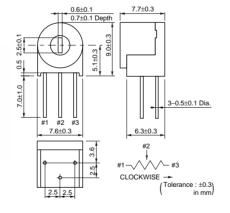

■ Applications

1. HDTVs 2. Professional cameras

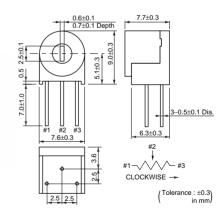
3. CATV 4. FAX 5. Printers 6. Sensors

7. Switching power supplies




PV12H

PV12P



PV12S

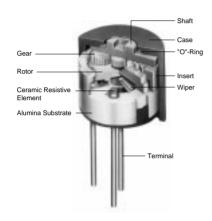
PV12T

Part Number	rt Number Power Rating (W) Soldering Method		Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PV12□100A01	0.5(70°C)	Flow/Soldering Iron	4	10ohm ±10%	±100
PV12□200A01	0.5(70°C)	Flow/Soldering Iron	4	20ohm ±10%	±100
PV12□500A01	0.5(70°C)	Flow/Soldering Iron	4	50ohm ±10%	±100
PV12□101A01	0.5(70°C)	Flow/Soldering Iron	4	100ohm ±10%	±100
PV12□201A01	0.5(70°C)	Flow/Soldering Iron	4	200ohm ±10%	±100
PV12□501A01	0.5(70°C)	Flow/Soldering Iron	4	500ohm ±10%	±100
PV12□102A01	0.5(70°C)	Flow/Soldering Iron	4	1k ohm ±10%	±100
PV12□202A01	0.5(70°C)	Flow/Soldering Iron	4	2k ohm ±10%	±100
PV12□502A01	0.5(70°C)	Flow/Soldering Iron	4	5k ohm ±10%	±100
PV12□103A01	0.5(70°C)	Flow/Soldering Iron	4	10k ohm ±10%	±100

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.

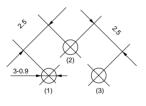
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page.

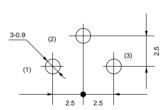

Part Number	Part Number Power Rating (W) Soldering Method		Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PV12□203A01	0.5(70°C)	Flow/Soldering Iron	4	20k ohm ±10%	±100
PV12□503A01	0.5(70°C)	Flow/Soldering Iron	4	50k ohm ±10%	±100
PV12□104A01	0.5(70°C)	Flow/Soldering Iron	4	100k ohm ±10%	±100
PV12□204A01	0.5(70°C)	Flow/Soldering Iron	4	200k ohm ±10%	±100
PV12□504A01	0.5(70°C)	Flow/Soldering Iron	4	500k ohm ±10%	±100
PV12□105A01	0.5(70°C)	Flow/Soldering Iron	4	1M ohm ±10%	±100
PV12□205A01	0.5(70°C)	Flow/Soldering Iron	4	2M ohm ±10%	±100

Operating Temperature Range: -55 to 125 $^{\circ}\text{C}$

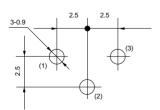
The blank column is filled with the code of adjustment direction and lead type (H, P, T and S).


The order quantity should be an integral multiple of the "Minimum Quantity".

■ Construction



■ Standard Mounting Holes


PV12H

PV12P/PV12S

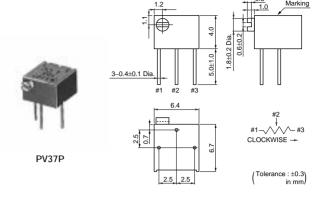
PV12T

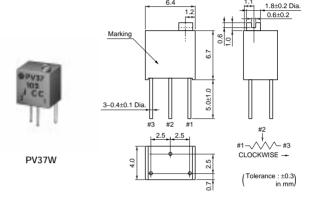
Tolerance: ±0.1)

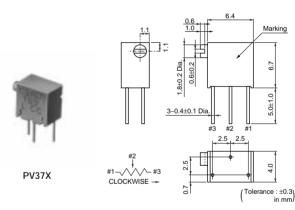
■ Characteristics

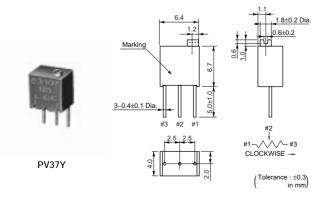
Temperature Cycle	ΔTR : ±2% ΔV.S.S.: ±1%
Humidity	Δ TR : $\pm 2\%$ IR : 100M ohm min.
Vibration (20G)	ΔTR : ±1% ΔV.S.S.: ±1%
Shock (100G)	ΔTR : ±1% ΔV.S.S.: ±1%
Temperature Load Life	ΔTR : ±3% ΔV.S.S.: ±2%
Low Temperature Exposure	ΔTR : ±3% ΔV.S.S.: ±1.5%
High Temperature Exposure	ΔTR : ±3% ΔV.S.S.: ±1.5%
Rotational Life	ΔTR : ±3% (200 cycles)

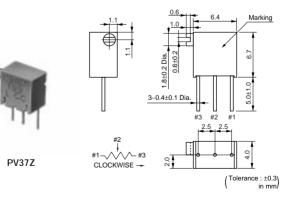
: Total Resistance Change ΔV.S.S.: Voltage Setting Stability IR : Insulation Resistance


PV37 Series


■ Features


- 1. Smaller volume (about one-third) than 25-turns potentiometer
- 2. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 3. Available for ultrasonic cleaning after soldering
- 4. Clutch mechanism prevents excessive wiper rotation.
- 5. 5 standard terminal styles
- 6. Both top and side adjustment directions


■ Applications

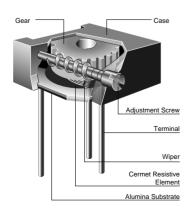

- 1. Measuring instruments
- 2. OA equipment 4. Power supply
- 3. Medical equipment
- 5. Base station for cellular phone

Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PV37□100C01	0.25(85°C)	Flow/Soldering Iron	12	10ohm ±10%	±150
PV37□200C01	0.25(85°C)	Flow/Soldering Iron	12	20ohm ±10%	±150
PV37□500C01	0.25(85°C)	Flow/Soldering Iron	12	50ohm ±10%	±150

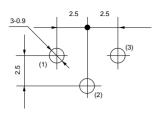
muRata

Continued from the preceding page.

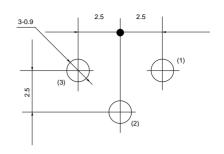
Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)	
PV37□101C01	□ 101C01 0.25(85°C) Flow/Soldering Iron		12	100ohm ±10%	±150	
PV37□201C01	0.25(85°C)	Flow/Soldering Iron	12	200ohm ±10%	±150	
PV37□501C01	0.25(85°C)	Flow/Soldering Iron	12	500ohm ±10%	±150	
PV37□102C01	0.25(85°C) Flow/Soldering Iron		12	1k ohm ±10%	±150	
PV37□202C01	0.25(85°C)	Flow/Soldering Iron	12	2k ohm ±10%	±150	
PV37□502C01	0.25(85°C)	Flow/Soldering Iron	12	5k ohm ±10%	±150	
PV37□103C01	0.25(85°C)	Flow/Soldering Iron	12	10k ohm ±10%	±150	
PV37□203C01	0.25(85°C)	Flow/Soldering Iron	12	20k ohm ±10%	±150	
PV37□253C01	0.25(85°C)	Flow/Soldering Iron	12	25k ohm ±10%	±150	
PV37□503C01	0.25(85°C)	Flow/Soldering Iron	12	50k ohm ±10%	±150	
PV37□104C01	0.25(85°C)	Flow/Soldering Iron	12	100k ohm ±10%	±150	
PV37□204C01	0.25(85°C)	Flow/Soldering Iron	12	200k ohm ±10%	±150	
PV37□254C01	0.25(85°C)	Flow/Soldering Iron	12	250k ohm ±10%	±150	
PV37□504C01	0.25(85°C)	Flow/Soldering Iron	12	500k ohm ±10%	±150	
PV37□105C01	0.25(85°C)	Flow/Soldering Iron	12	1M ohm ±10%	±150	
PV37□205C01	0.25(85°C)	Flow/Soldering Iron	12	2M ohm ±10%	±150	
PV37□100C31	0.25(85°C)	Flow/Soldering Iron	12	10ohm ±10%	±150	
PV37□200C31	0.25(85°C)	Flow/Soldering Iron	12	20ohm ±10%	±150	
PV37□500C31	0.25(85°C)	Flow/Soldering Iron	12	50ohm ±10%	±150	
PV37□101C31	0.25(85°C)	Flow/Soldering Iron	12	100ohm ±10%	±150	
PV37□201C31	0.25(85°C)	Flow/Soldering Iron	12	200ohm ±10%	±150	
PV37□501C31	0.25(85°C)	Flow/Soldering Iron	12	500ohm ±10%	±150	
PV37□102C31	0.25(85°C)	Flow/Soldering Iron	12	1k ohm ±10%	±150	
PV37□202C31	0.25(85°C)	Flow/Soldering Iron	12	2k ohm ±10%	±150	
PV37□502C31	0.25(85°C)	Flow/Soldering Iron	12	5k ohm ±10%	±150	
PV37□103C31	0.25(85°C)	Flow/Soldering Iron	12	10k ohm ±10%	±150	
PV37□203C31	0.25(85°C)	Flow/Soldering Iron	12	20k ohm ±10%	±150	
PV37□253C31	0.25(85°C)	Flow/Soldering Iron	12	25k ohm ±10%	±150	
PV37□503C31	0.25(85°C)	Flow/Soldering Iron	12	50k ohm ±10%	±150	
PV37□104C31	0.25(85°C)	Flow/Soldering Iron	12	100k ohm ±10%	±150	
PV37□204C31	0.25(85°C)	Flow/Soldering Iron	12	200k ohm ±10%	±150	
PV37□254C31	0.25(85°C)	Flow/Soldering Iron	12	250k ohm ±10%	±150	
PV37□504C31	0.25(85°C)	Flow/Soldering Iron	12	500k ohm ±10%	±150	
PV37□105C31	0.25(85°C)	Flow/Soldering Iron	12	1M ohm ±10%	±150	
PV37□205C31	0.25(85°C)	Flow/Soldering Iron	12	2M ohm ±10%	±150	


Operating Temperature Range: -55 to 125 °C

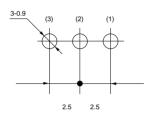
The blank column is filled with the code of adjustment direction and lead type (P, X, Y, W and Z).


The order quantity should be an integral multiple of the "Minimum Quantity".

The last three digits express the individual specification codes. C01 for standard type and C31 for radial taping type (PV37Y/PV37Z series only).


■ Construction

PV37P



PV37W/PV37X

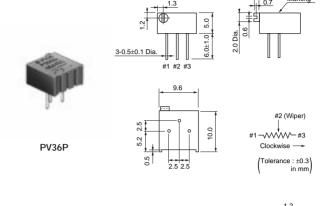
Tolerance: ±0.1 in mm

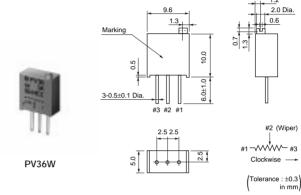
PV37Y/PV37Z

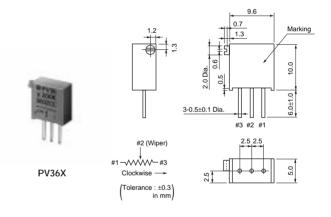
■ Characteristics

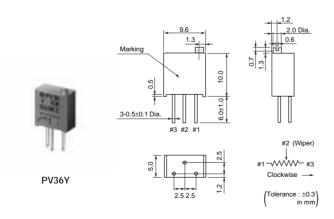
Temperature Cycle	ΔTR : ±1% ΔV.S.S.: ±1%
Humidity	ΔTR : $\pm 2\%$ IR : 100M ohm min.
Vibration (20G)	ΔTR : ±1% ΔV.S.S.: ±1%
Shock (100G)	ΔTR : ±1% ΔV.S.S.: ±1%
Temperature Load Life	ΔTR : ±2% ΔV.S.S.: ±1%
Low Temperature Exposure	ΔTR : ±1% ΔV.S.S.: ±1%
High Temperature Exposure	ΔTR : ±2% ΔV.S.S.: ±1%
Rotational Life	ΔTR : R≦100 ohm ··· ±3% R>100 ohm ··· ±2% (200 cycles)

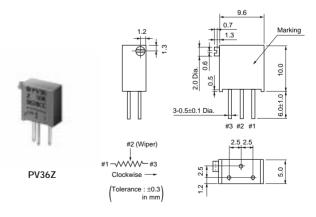
: Total Resistance Change ΔV.S.S.: Voltage Setting Stability IR : Insulation Resistance : Standard Total Resistance


PV36 Series


■ Features


- 1. High resolution 25-turns enables precision adjustment easily.
- 2. Sealed construction protects the interior from dust and liquid, which achieves stable performance.
- 3. Available for ultrasonic cleaning after soldering
- 4. Clutch mechanism prevents excessive wiper rotation.
- 5. 5 standard terminal styles
- 6. Both top and side adjustment directions.

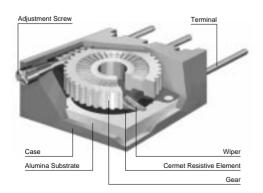

■ Applications


- 1. Measuring instruments
- 2. OA equipment4. Power supply
- 3. Medical equipment
- 5. Base station for cellular phone

Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PV36□100C01	0.5(70°C)	Flow/Soldering Iron	25	10ohm ±10%	±150
PV36□200C01	0.5(70°C)	Flow/Soldering Iron	25	20ohm ±10%	±150
PV36□500C01	0.5(70°C)	Flow/Soldering Iron	25	50ohm ±10%	±150

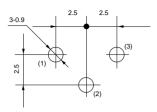
Continued from the preceding page.

Part Number	Power Rating (W) Soldering Method		Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)	
PV36□101C01	0.5(70°C)	Flow/Soldering Iron	25	100ohm ±10%	±150	
PV36□201C01	0.5(70°C)	Flow/Soldering Iron	25	200ohm ±10%	±100	
PV36□501C01	0.5(70°C)	Flow/Soldering Iron	25	500ohm ±10%	±100	
PV36□102C01	0.5(70°C)	Flow/Soldering Iron	25	1k ohm ±10%	±100	
PV36□202C01	0.5(70°C)	Flow/Soldering Iron	25	2k ohm ±10%	±100	
PV36□502C01	0.5(70°C)	Flow/Soldering Iron	25	5k ohm ±10%	±100	
PV36□103C01	0.5(70°C)	Flow/Soldering Iron	25	10k ohm ±10%	±100	
PV36□203C01	0.5(70°C)	Flow/Soldering Iron	25	20k ohm ±10%	±100	
PV36□253C01	0.5(70°C)	Flow/Soldering Iron	25	25k ohm ±10%	±100	
PV36□503C01	0.5(70°C)	Flow/Soldering Iron	25	50k ohm ±10%	±100	
PV36□104C01	0.5(70°C)	Flow/Soldering Iron	25	100k ohm ±10%	±100	
PV36□204C01	0.5(70°C)	Flow/Soldering Iron	25	200k ohm ±10%	±100	
PV36□254C01	0.5(70°C)	Flow/Soldering Iron	25	250k ohm ±10%	±100	
PV36□504C01	0.5(70°C)	Flow/Soldering Iron	25	500k ohm ±10%	±100	
PV36□105C01	0.5(70°C)	Flow/Soldering Iron	25	1M ohm ±10%	±100	
PV36□205C01	0.5(70°C)	Flow/Soldering Iron	25	2M ohm ±10%	±100	
PV36□100C31	0.5(70°C)	Flow/Soldering Iron	25	10ohm ±10%	±150	
PV36□200C31	0.5(70°C)	Flow/Soldering Iron	25	20ohm ±10%	±150	
PV36□500C31	0.5(70°C)	Flow/Soldering Iron	25	50ohm ±10%	±150	
PV36□101C31	0.5(70°C)	Flow/Soldering Iron	25	100ohm ±10%	±150	
PV36□201C31	0.5(70°C)	Flow/Soldering Iron	25	200ohm ±10%	±100	
PV36□501C31	0.5(70°C)	Flow/Soldering Iron	25	500ohm ±10%	±100	
PV36□102C31	0.5(70°C)	Flow/Soldering Iron	25	1k ohm ±10%	±100	
PV36□202C31	0.5(70°C)	Flow/Soldering Iron	25	2k ohm ±10%	±100	
PV36□502C31	0.5(70°C)	Flow/Soldering Iron	25	5k ohm ±10%	±100	
PV36□103C31	0.5(70°C)	Flow/Soldering Iron	25	10k ohm ±10%	±100	
PV36□203C31	0.5(70°C)	Flow/Soldering Iron	25	20k ohm ±10%	±100	
PV36□253C31	0.5(70°C)	Flow/Soldering Iron	25	25k ohm ±10%	±100	
PV36□503C31	0.5(70°C)	Flow/Soldering Iron	25	50k ohm ±10%	±100	
PV36□104C31	0.5(70°C)	Flow/Soldering Iron	25	100k ohm ±10%	±100	
PV36□204C31	0.5(70°C)	Flow/Soldering Iron	25	200k ohm ±10%	±100	
PV36□254C31	0.5(70°C)	Flow/Soldering Iron	25	250k ohm ±10%	±100	
PV36□504C31	0.5(70°C)	Flow/Soldering Iron	25	500k ohm ±10%	±100	
PV36□105C31	0.5(70°C)	Flow/Soldering Iron	25	1M ohm ±10%	±100	
PV36□205C31	0.5(70°C)	Flow/Soldering Iron	25	2M ohm ±10%	±100	

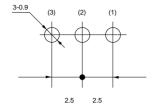

Operating Temperature Range: -55 to 125 °C

The blank column is filled with the code of adjustment direction and lead type (P, X, Y, W and Z).

The order quantity should be an integral multiple of the "Minimum Quantity".

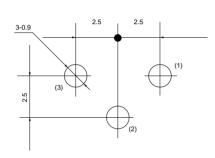

The last three digits express the individual specification codes. C01 for standard type and C31 for radial taping type (PV36W/PV36X series only).

■ Construction



■ Standard Mounting Holes

PV36P



PV36W/X

 $\left(\begin{array}{c} \text{Tolerance: } \pm 0.1 \\ \text{in mm} \end{array} \right)$

PV36Y/Z

■ Characteristics

Temperature Cycle	ΔTR : ±2% ΔV.S.S.: ±1%
Humidity	ΔTR : $\pm 2\%$ IR : 100M ohm min.
Vibration (20G)	ΔTR : ±1% ΔV.S.S.: ±1%
Shock (100G)	ΔTR : ±1% ΔV.S.S.: ±1%
Temperature Load Life	ΔTR : ±3% ΔV.S.S.: ±1%
Low Temperature Exposure	ΔTR : ±2% ΔV.S.S.: ±1%
High Temperature Exposure	ΔTR : ±3% ΔV.S.S.: ±1%
Rotational Life	ΔTR : R≦1k ohm, R≥500k ohm ··· ±5% 1k ohm <r<500k (200="" cycles)<="" ohm="" td="" ±3%="" ···=""></r<500k>

: Total Resistance Change ΔV.S.S.: Voltage Setting Stability IR : Insulation Resistance : Standard Total Resistance

PV12/PV37/PV36 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store in temperatures of -10 to +40 deg. C and relative humidity of 30-85%.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- If you use the trimmer potentiometer in an environment other than listed below, please consult with a Murata factory representative prior to using.

The trimmer potentiometer should not be used under the following environmental conditions:

- Notice (Rating)
- 1. When using with partial load (rheostat), minimize the power depending on the resistance value.
- 2. The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.

- Corrosive gaseous atmosphere
 (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)
- (2) In liquid (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere
- (4) Direct sunlight
- (5) Static voltage nor electric/magnetic fields
- (6) Direct sea breeze
- (7) Other variations of the above

■ Notice (Soldering and Mounting)

- 1. Soldering
- (1) Soldering condition Refer to the temperature profile. If the soldering conditions are not suitable, e.g., excessive time and/or excessive temperature, the trimmer potentiometer may deviate from the specified characteristics.
- (2) To minimize mechanical stress when adjusting, the trimmer potentiometer should be mounted onto PCB without gap.
- (3) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.

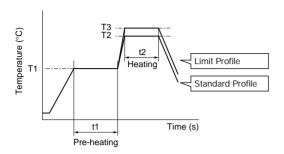
2. Mounting

- (1) Use PCB hole to meet the pin of the trimmer potentiometer. If the trimmer potentiometer installs into insufficient PCB hole, the trimmer potentimeter may be damaged by mechanical stress.
- (2) Do not apply excessive force, preferably 9.8N max. (Ref. 1kgf) when the trimmer potentiometer is mounted to the PCB.
- 3. Cleaning

Isopropyl-alcohol and Ethyl-alcohol are applicable solvents for cleaning. If you use any other types of solvents, please consult with a Murata factory representative prior to using.

46

sales representatives or product engineers before ordering.


• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

PV12/PV37/PV36 Series Notice

■ Soldering Profile

Flow Soldering Profile

Soldering profile for Lead-free solder (96.5Sn/3.0Ag/0.5Cu), Eutectic solder (63Sn/37Pb)

Series	Standard Profile				Limit Profile					
	Pre-heating		Heating		Cycle	Pre-heating		Heating		Cycle
	Temp. (T1)	Time (t1)	Temp. (T2)	Time (t2)	of Flow	Temp. (T1)	Time (t1)	Temp. (T3)	Time (t2)	of Flow
	°C	sec.	°C	sec.	Time	°C	sec.	°C	sec.	Time
PV12 PV37 PV36	150	60 to 120	250	5 max.	1	150	60 to 120	260	3 max.	1

Soldering Iron

	Standard Condition					
Series	Temperature of Soldering Iron Tip	Soldering Time	Soldering Iron Power Output	Cycle of Soldering Iron		
	°C	sec.	W	Time		
PV12 PV37 PV36	350±10	3 max.	30 max.	1		

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in driver slot. We recommend the screwdrivers below.
 - * Recommended screwdriver for manual adjustment ENGINEER INC.: DA-40 (Murata P/N: KMDR180)

We can supply the screwdrivers above.

If you place order, please specify the Murata P/N.

 Do not apply more than 9.8N (Ref. 1kgf) of twist and stress after mounting onto PCB to prevent contact intermittence. If excessive force is applied, the trimmer potentiometer may not function.

■ Notice (Other)

- Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.
- 2. Murata cannot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

- When adjusting with an adjustment tool, the applied force to the adjustment screw should not exceed
 N (Ref. 500gf). If excessive force is applied, the trimmer potentiometer may not function due to damage.
- 4. When using a lock paint to fix slot position, please use adhesive resin without chlorine or sulfur (Three-bond "1401 series") and evaluate performance with your product. Lock paint may cause corroison or electrical contact problems.

SMD Open Type (PVZ2/A2/Z3)/SMD Sealed Type (PVM4A_C01 Series) Specifications and Test Methods

The tests and measurements should be conducted under the condition of 15 to 35°C of temperature, 25 to 75% of relative humidity and 86 to 106 kpa of atmospheric pressure unless otherwise specified. If questionable results occur that have been measured in accordance with the above mentioned conditions, the tests and measurements should be conducted under the condition of 25±2°C of temperature, 45 to 55% of relative humidity and 86 to 106 kpa of atmospheric pressure.

No.	Item	Test Methods				
1	Residual Resistance	Position the contact arm at the extreme counterclockwise limit of mechanical travel and measure the resistance between the contact arm and the corresponding end terminal. Then, position the contact arm at the extreme clockwise limit of mechanical travel and measure the resistance between the contact arm and the corresponding end terminal. During this test, take suitable precautions to ensure that the rated current of the resistance element is not exceeded.				
2	Contact Resistance	Contact resistance variation should be measured with the measuring circuit shown below, or its equivalent. The operating wiper should be rotated in both directions through 90% of the actual effective-electrical travel for a total of 6 cycles. The rate of rotation of the operating wiper should be such that the wiper completes 1 count in determining whether or not a contact resistance variation is observed at least twice in the same location. The test current should follow the value given in Table 2 unless otherwise limited by the power rating. Standard Total Resistance R (ohm) Test Current 100≤R<10k 20mA max. 100≤R<10k 20mA max. 100k≤R<100k 1mA max. Table 2: Test current for CRV Rx: Trimmer Potentiometer Oscilloscope bandwidth: 100Hz to 50kHz Figure 1: CRV measuring circuit				
3	Humidity Exposure	The wiper contact point should be preset at about 50% position of effective rotational angle. After that, the potentiometer should be placed in a chamber at 40±2°C and 90 - 95% without loading for 500±12 hours. The resistance value should be measured after keeping the potentiometer in a room for 5±1/6 hours.				
4	High Temperature Exposure	The wiper contact point should be preset at about 50% position of effective rotational angle. After that, the potentiometer should be placed in a chamber at 70±2°C without loading for 500±12 hours. The resistance value should be measured after keeping the potentiometer in a room for 1.5±1/6 hours.				
5	Humidity Load Life	The wiper contact point should be preset at about 50% position of effective rotational angle. After that, the potentiometer should be placed in a chamber at 40±2°C and 90 - 95% with loading the 1/2 rated voltage between #1 and #2 terminals, intermittently 1.5 hours ON and 0.5 hours OFF for 1000±12 hours. The resistance value should be measured after keeping the potentiometer in a room for 5±1/6 hours.				
6	Load Life	The wiper contact point should be preset at about 50% position of effective rotational angle. After that, the potentiometer should be placed in a chamber at 70±2°C (50±2°C for PVZ) with loading the 1/2 rated voltage between #1 and #2 terminals, intermittently 1.5 hours ON and 0.5 hours OFF for 1000±12 hours. The resistance value should be measured after keeping the potentiometer in a room for 1 to 2 hours.				
7	Temperature Cycle	The wiper contact point should be preset at about 50% position of effective rotational angle. After that, the potentiometer should be subjected to Table 3, Table 4 temperature for 5 cycles. The resistance value should be measured after keeping the potentiometer in a room for 1 to 2 hours. Sequence 1 2 3 4 Temp. (°C) -25±3 +25±2 +85±3 +25±2 Time (min.) 30±3 10 max. 30±3 10 max. 30±3 10 max. Table 3: PVZ Table 4: PVA2/PVM44 C01				
8	Temperature Coefficient of Resistance	The trimmer potentiometer should be subjected to each of the following temperatures (see Table 5, Table 6) for 30 to 40 minutes. The resistance value should be measured in the chamber. $TCR = \frac{R_2 - R_1}{R_1 (T_2 - T_1)} \times 10^6 \text{ (ppm/°C)}$ $T_1 : \text{Reference temperature in degrees celsius}$ $T_2 : \text{Test temperature in degrees celsius}$ $R_1 : \text{Resistance at reference temperature in ohm}$ $R_2 : \text{Resistance at test temperature in ohm}$ $\frac{\text{Sequence}}{\text{Temp. (°C)}} = \frac{1^*}{125 \pm 2} = \frac{3^*}{125 \pm 2} = \frac{4}{125 \pm 3}$ $\frac{\text{Sequence}}{\text{Table 5: PVZ}} = \frac{1^*}{125 \pm 2} = \frac{3^*}{125 \pm 2} = \frac{4}{125 \pm 3}$ $\frac{\text{Table 6: PVA2/PVM4A}}{\text{Table 6: PVA2/PVM4A}} = C01$				
9	Rotational Life	The wiper should be rotated over 90% of the effective rotational angle without loading at a speed of 10 cycles per minute, for 10 cycles continuously. The resistance value should be measured after keeping the potentiometer in a room for 10±5 minutes.				

SMD Sealed Type (PVF2/G3/M4A_D01/G5)/Lead Sealed Type (PV32/12/37/36) Specifications and Test Methods

The following describes trimmer potentiometer testing conducted by Murata Manufacturing Co., Ltd. in accordance with MIL-R-22097 (Military specification for variable resistors, non-wirewound) and MIL-STD-202 (Test methods for electronic and electrical component parts).

No.	Item			Test N	Test Methods					
		Measure total resistance between the resistance element and terminals (#1 and #3) with the contact arm positioned against a stop. The positioning of the contact arm and terminal should be the same for subsequent total resistance measurements on the same device. Use the test voltage specified in Table 1 for total resistance measurements. This voltage should be used for all subsequent total resistance measurements.								
			Maximum Te	<u>·</u> _	tance me	asureme	sus.			
		Total Resistance, Nominal (ohm)	Voltage (V)							
1	Total Resistance	10≦R≦100	1.0							
		100 <r≦1k< td=""><td>3.0</td><td></td><td></td><td></td><td></td></r≦1k<>	3.0							
		1k <r≦10k 10k<r≦100k< td=""><td>10.0 30.0</td><td></td><td></td><td></td><td></td></r≦100k<></r≦10k 	10.0 30.0							
		100k <r< td=""><td>100.0</td><td></td><td></td><td></td><td></td></r<>	100.0							
		Table 1: Total resista		 ge						
2	Residual Resistance	between the contact arm wise limit of mechanical	n and the corre travel and mea	sponding end term asure the resistanc	ninal. The e betwee	n, position n the co	al travel and measure the resistance on the contact arm at the extreme clock- ntact arm and the corresponding end ter- urrent of the resistance element is not			
	Contact Resistance Variation	adjustment rotor (screw) angle (number of turns) contact resistance variat where the contact arm madjustment rotor (screw) to 2 minutes maximum. power rating. Standard Total Resist	should be rota for a total of 6 ion is observe- noves from the should be suc The test currer	ated in both direction cycles. Only the last dat least twice in the termination, on or that that the adjustments.	ons through st 3 cycle he same off, the re ent rotor (gh 90% or s should location, esistance (screw) or	t shown in Figure 1, or its equivalent. The of the actual effective-electrical rotational acount in determining whether or not a exclusive of the roll-on or roll-off points element. The rate of rotation of the completes 1 cycle for 5 seconds minimum in Table 2 unless otherwise limited by			
3		R (ohm) R≦100		OmA						
		100 <r<500< td=""><td></td><td>lm Δ</td><td>Constant Cur</td><td></td><td>Proofread O</td></r<500<>		lm Δ	Constant Cur		Proofread O			
		500≦R<1k		mA	(Test current	Shown in Ta	Resistance AC Amplifier			
		1k≦R<2k		mA .		Dv : Tris				
		2k≦R<50k 50k≦R<200k		<u>mA</u>)ΟμΑ	Rx : Trimmer Potentiometer Oscilloscope bandwidth :100Hz to 50kHz					
		200k≦R<1M		00μA 00μA		Fig	ure 1: CRV measuring circuit			
		1M≦R<2M		0μA						
		2M≦R		0μA						
		Table 2: Test of	current for CRV	/						
		The state of the second state of the second					nperatures (see Table 3) for 30-45 min- ng formula.			
4	Temperature Coefficient of Resistance	utes. Temperature coefficients $TCR = \frac{R_2 - R_1}{R_1 (T_2 - T_1)} \times \frac{T_1 : Reference}{T_2 : Test temperature}$	10 ⁶ (ppm/°C) temperature in erature in degree at reference t	n degrees celsius ees celsius emperature ohm	, , , , , , , , , , , , , , , , , , ,					
4	•	utes. Temperature coefficients $TCR = \frac{R_2 - R_1}{R_1 (T_2 - T_1)} \times \frac{T_1 : Reference}{T_2 : Test temperature}$ $R_1 : Resistance$	10 ⁶ (ppm/°C) temperature in erature in degree at reference t	n degrees celsius ees celsius emperature ohm	4*	5	6			
4	•	utes. Temperature coefficients $TCR = \frac{R_2 - R_1}{R_1 (T_2 - T_1)} \times \frac{T_1 : Reference}{T_2 : Test temperature}$ $R_1 : Resistance$ $R_2 : Resistance$	temperature in degree at reference to at test tempe	n degrees celsius ees celsius emperature ohm rature in ohm 3 Min. operating		5 +65	6 Max. operating			
4	•	utes. Temperature coefficients $TCR = \frac{R_2 - R_1}{R_1 (T_2 - T_1)} \times \frac{T_1 : Reference}{T_2 : Test tempe}$ $R_1 : Resistance$ $R_2 : Resistance$ $Sequence$	temperature in degree at reference to at test temperature in degree at test temperature in test in tes	n degrees celsius ees celsius emperature ohm rature in ohm	4*		6			
4	•	utes. Temperature coeffice TCR= R2 - R1	temperature in degree at reference to at test temperature 1* 2 +25 -15 rature	n degrees celsius ees celsius emperature ohm rature in ohm 3 Min. operating	4* +25		6 Max. operating			
4	Resistance	utes. Temperature coeffice TCR= R2 - R1 R1 (T2 - T1) X T1 : Reference T2 : Test temperature (T2 : Resistance R2 : Resistance R2 : Resistance R2 : Reference Temperature (°C) Note*: Reference temperature DC test potent and terminal #3, and the following formula.	temperature in degrature in degrature in degrate e at reference to at test tempe 1* 2 +25 -15 rature Table at approximate tial should be a voltage between	an degrees celsius ees celsius ees celsius emperature ohm rature in ohm 3 Min. operating Temperature 3: Test temperature ely 40% of the actual ely 40% of the actual element terminal #1 and element	4* +25 res ual effectiv	+65 ve-electr and term	6 Max. operating			
4	Resistance Voltage Setting	utes. Temperature coeffice TCR= R2 - R1	temperature in degrature in degrature in degrate e at reference to at test tempe 1* 2 +25 -15 rature Table at approximate tial should be a voltage between	an degrees celsius ees celsius ees celsius emperature ohm rature in ohm 3 Min. operating Temperature 3: Test temperature ely 40% of the actual ely 40% of the actual element terminal #1 and element	4* +25 res ual effectiv	+65 ve-electr and term	6 Max. operating Temperature ical rotational angle (number of turns). An ninal #3. The voltage between terminal #1 uld be measured and applied to the			
	Resistance	utes. Temperature coeffice TCR= R2 - R1 R1 (T2 - T1) X T1 : Reference T2 : Test temperature (T2 : Resistance R2 : Resistance R2 : Resistance R2 : Reference Temperature (°C) Note*: Reference temperature DC test potent and terminal #3, and the following formula.	temperature in degree at reference to a test tempe $\frac{1^*}{2} = \frac{2}{+25} = -15$ rature Table at approximate that should be a voltage between $\frac{1^*}{E} = \frac{e}{E} \times 10^{-2}$ at terminal #1 a	an degrees celsius ees celsius ees celsius emperature ohm rature in ohm 3 Min. operating Temperature 3: Test temperature ely 40% of the actuapplied between telen terminal #1 and 100 (%)	4* +25 res ual effectiv	+65 ve-electr and term	6 Max. operating Temperature ical rotational angle (number of turns). An ninal #3. The voltage between terminal #1 uld be measured and applied to the			

SMD Sealed Type (PVF2/G3/M4A D01/G5)/Lead Sealed Type (PV32/12/37/36) Specifications and Test Methods

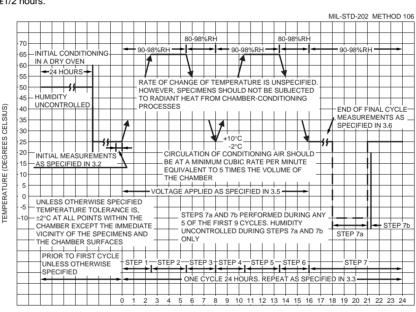
Continued from the preceding page. No Item Test Methods The trimmer potentiometer should be subjected to Table 4 temperature for 5 cycles. The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 1-2 hours.

> 4 Temp. PV series -55±3 +125±3 +25±2 +25±2 -25 + 3+60+3 Time (min.) 30 5 max 30 5 max.

> > Table 4: One cycle of temperature cycle.

1) PV12, PV32, PVM4A DD01 series

The trimmer potentiometer should be placed in a chamber at a temperature of 40±2°C and a humidity of 90-95% without loading for 250±8 hours (500±12 hours for PVM4A DD01 series). The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 5±1/6 hours.


Temperature Cycle

Humidity

The trimmer potentiometer should be placed in a chamber at 60±2°C and 90-95% without loading for 1000±12 hours. The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 5±1/6 hours

2) PVG3, PVG5, PV36, PV37 series

The trimmer potentiometer should be subjected to the programmed humidity environment for 10cycle (see Figure 3). The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 1.5±1/2 hours.

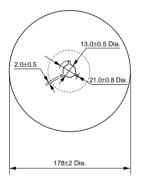
		SOF THE FIRST 9 CYCLES. HUMIDITY				
8	Vibration	Figure 3 1) PV series The trimmer potentiometer should be vibrated throughout the frequency range at the 20G level. A complete frequency range, 10Hz to 2000Hz and back, should be made within 15 minutes for a total of 4 sweeps in each of the three axis directions for a total of 12 sweeps. 2) PVF2 series The trimmer potentiometer should be subjected to vibration at 0.3 inch amplitude. The frequency should be varied uniformly between the approximate limits of 10Hz and 55Hz. This motion should be applied for period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).				
9	Shock	1) PV series The trimmer potentiometer should be shocked at the 100G level and should be subjected to 4 shocks in each of the three axis directions for a total of 12 shocks. 2) PVM4A D01 series The trimmer potentiometer should be shocked at the 100G level and should be subjected to 3 shocks in each of the six axis directions for a total of 18 shocks.				
10	Temperature Road Life	Full rated continuous working voltage not exceeding the maximum rated voltage should be applied intermittently between terminal #1 and terminal #3 of the trimmer potentiometer, 1.5 hours on and 0.5 hours off, for a total of 1000±12 hours, at a temperature of 70±2°C (85±2°C for PV37 series, 50±2°C for PVF2 series). The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 1 to 2 hours.				
11	High Temperature Exposure (Except for PVF2)	The trimmer potentiometer should be placed in a chamber at a temperature of 125±3°C 250±8 hours without loading. The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for 1 to 2 hours.				
12	Low Temperature Exposure (Except for PVF2 and PVM4A DD01)	The trimmer potentiometer should be placed in a chamber at a temperature of -55±3°C for 1 hours without loading. Full rated continuous working voltage not exceeding the maximum rated voltage should be applied for 45 minutes. The trimmer potentiometer should be removed from the chamber, and maintained at a temperature of 25±5°C for approximately 24 hours.				

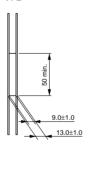
sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

SMD Sealed Type (PVF2/G3/M4A D01/G5)/Lead Sealed Type (PV32/12/37/36) Specifications and Test Methods

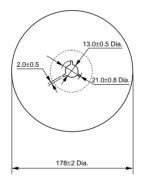
Continued from the preceding page. No Item **Test Methods** Low Temperature Operation The trimmer potentiometer should be placed in a chamber at a temperature of -25±3°C (-55±3°C for PVM4A□□□ (Only for PVF2 and D01 series) 48±4 hours without loading. The trimmer potentiometer should be removed from the chamber, and main-13 PVM4ADDD01) tained at a temperature of 25±5°C for 1-2 hours. 1)PV□□ series Full rated continuous working voltage not exceeding the maximum rated voltage should be applied with the circuit shown in the figure. The adjustment rotor (screw) should be continuously cycled through not less than 90% of effective-electrical rotational angle (number of turns), at the rate of 1 cycle for 5 seconds minimum to 2.5 minutes maximum for total of 200 cycles. Rotational Life Figure 4 2) PVG3. PVG5 series The adjustment rotor (screw) should be continuously cycled though not less than 90% of effective-electrical rotational angle (number of turns), at the rate of 1 cycle for 5 seconds minimum to 2.5 minutes maximum for a total of 50 (100 for PVG5) cycles, without loading. 3) PVF2, PVM4A DD01 series The wiper should be rotated over 90% of the effective rotational angle without loading at a speed of 10 cycles per minute, for 100 cycles continuously.

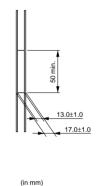


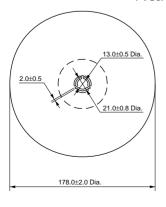

■ Minimum Quantity

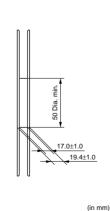
Don't Nivershow		Minimum Quantity (pcs.)							
Part Number	ø180mm reel	ø330mm reel	Ammo Pack	Magazine	Bulk	Tray			
PVZ2A	3000	12000	_	_	1000	_			
PVZ2R	3000	_	_	_	1000	_			
PVA2	3000	_	_	_	1000	_			
PVZ3A	2000	8000	_	_	1000	_			
PVZ3G	2500	_	_	_	1000	_			
PVZ3K	1500	_	_	_	1000	_			
PVG3A/G	1000	_	_	_	500	_			
PVG3K	500	_	_	_	_	_			
PVM4	500	3000	_	_	500	_			
PVF2A	500	_	_	_	100	_			
PVG5A	250	_	_	_	100	_			
PVG5H	500	_	_	_	100	_			
PV32	_	_	_	_	300	_			
PV12	_	_	_	_	50	_			
PV36W	_	_	1000	1000	100	_			
PV36Y	_	_	_	1000	100	_			
PV36X	_	_	1000	800	100	_			
PV36Z/P	_	_	_	800	100	_			
PV37Y/Z	_	_	1000	_	100	_			
PV37W/X/P	_	_	_	_	100	_			

■ Dimensions of Reel

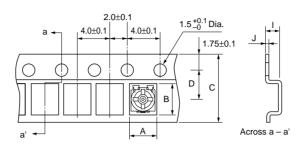

PVZ2A/PVA2/PVZ3A/PVZ3G/PVF2




(in mm)


PVZ2R/PVZ3K/PVM4/PVG3/PVG5H

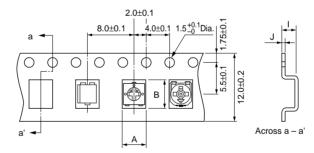
PVG5A



Continued from the preceding page.

■ Dimensions of Plastic Tape

PVZ2 / PVA2 / PVZ3 / PVF2


Tape feeding direction

Part Number	Α	В	С	D	ı	J
PVZ2A	2.4±0.2	3.1±0.1	8.0±0.2	3.5±0.1	1.1±0.1	0.2±0.1
PVZ2R		5.1±0.2	12.0±0.2	5.5±0.1	1.0±0.1	0.3±0.1
PVA2		3.1±0.1			1.1±0.1	
PVZ3A		2.8+0.2	8.0±0.2	3.5±0.1	1.95±0.1	0.2±0.1
PVZ3G	3.3±0.2	3.8±0.2			1.3±0.1	
PVZ3K		5.8±0.2	12.0±0.2	5.5±0.1	2.3±0.1	0.3±0.1
PVF2	2.3±0.2	2.3±0.2	8.0±0.2	3.5±0.1	2.3±0.1	0.3±0.1

[•] The side containing terminals #1 and #3 faces the plastic tape pilot holes.

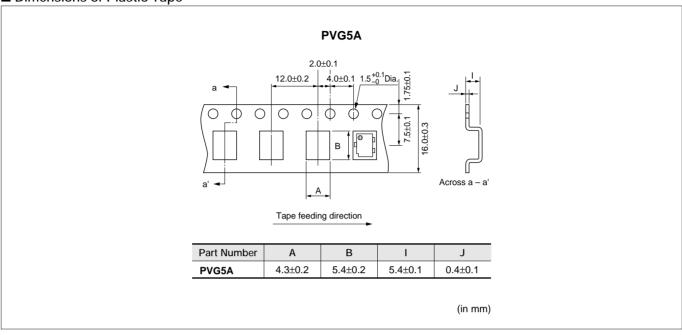
(in mm)

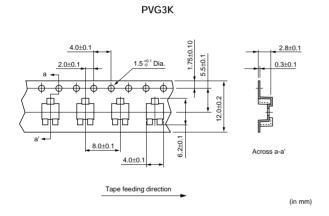
PVG3A / PVG3G / PVM4 / PVG5H

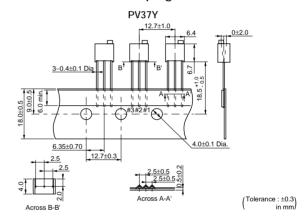
Tape feeding direction

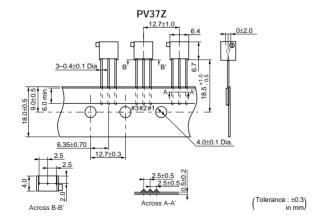
Part Number	Α	В	I	J	
PVG3A	4.040.4	4.0±0.1	2.1+0.1	0.010.4	
PVG3G	4.0±0.1	4.9±0.1	2.1±0.1	0.3±0.1	
PVM4	4.5±0.2	5.5±0.2	2.15±0.1	0.3±0.1	
PVG5H	5.4±0.2	5.8±0.2	4.0±0.1	0.4±0.1	

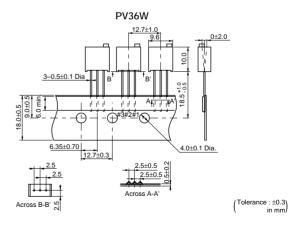
[•] The side containing terminals #1 and #3 faces the plastic tape pilot holes (except PVG3).


(in mm)

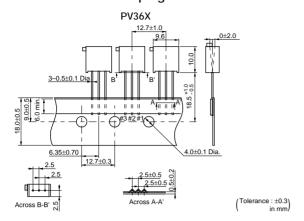


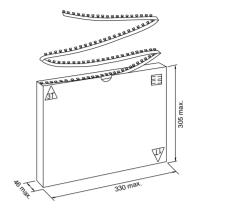

Continued from the preceding page.


■ Dimensions of Plastic Tape



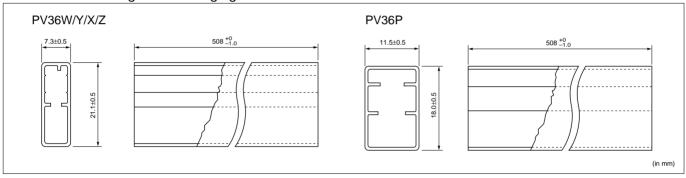
■ Dimensions of Radial Taping





Continued from the preceding page.

■ Dimensions of Radial Taping



■ Dimensions of Ammo Pack

(in mm)

■ Dimensions of Magazine Packaging

Recommended Adjustment Tools/Qualified Standards

■ Recommended Adjustment Tools

Trimmer Potentiometer Series	Manufacturers	Model Number	MURATA Model Number	Blade
PVZ2/PVA2	MURATA MFG.	KMDR190	KMDR190	+ Cross
PVZ3	VESSEL MFG.	No.9000+1.7×30	KMDR080	+ Cross
PVG3	TORAY INDUSTRIES, INC.	SA-2225	KMDR070	– Minus (round edge)
PVM4	VESSEL MFG.	No.9000-2.6×30	KMDR120	- Minus
BV05	VESSEL MFG.	No.9000-1.3×30	KMDR130	- Minus
PVG5	ENGINEER INC.	DA-54		- Minus
	VESSEL MFG.	No.9000-1.8×30	KMDR110	- Minus
others	ENGINEED INC	DA-40	KMDR180	- Minus (both ends)
	ENGINEER INC.	DA-55		– Minus

■ For Automatic Adjustment

Trimmer Potentiometer Series	Manufacturers	Model Number	MURATA Model Number	Blade
PVZ3 PVG3	TORAY INDUSTRIES, INC	JB-2225	KMBT070	– Minus (round edge)

■ Qualified Standards

The products listed here have been produced by the ISO9001 and ISO/TS16949 certified factory.

MURATA FACTORY	Qualified Date	Standard	Qualified Number
Sabae Murata Mfg.Co.,Ltd.	August 14, 1997	UNDERWRITERS LABORATORIES INC.	A5704
Wuxi Murata Electronis Co.,Ltd.	May 12, 1999	UNDERWRITERS LABORATORIES INC.	A7924

^{*} No ODCs (Ozone Depleting Chemicals) are used on all Murata's trimmer potentiometers.

R50E.pdf 08.8.26

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

⚠Note:

1. Export Control

<For customers outside Japan>

No muRata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction [nuclear, chemical or biological weapons or missiles] or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.

<For customers in Japan>

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
 - 1 Aircraft equipment
- 2 Aerospace equipment
- ③ Undersea equipment
- Power plant equipment
- (5) Medical equipment
- Transportation equipment (vehicles, trains, ships, etc.)
 Disaster prevention / crime prevention equipment
- 7 Traffic signal equipment9 Data-processing equipment
- Application of similar complexity and/or reliability requirements to the applications listed above
- 3. Product specifications in this catalog are as of July 2008. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
- 4. Please read rating and 🛆 CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

http://www.murata.com/